

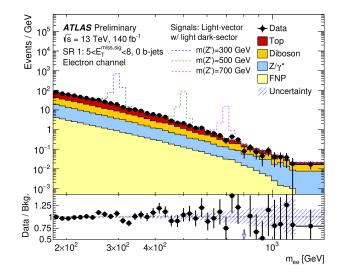
Searches for Exotic Heavy Resonances with the ATLAS detector

Marija Marjanović

University of Oklahoma

On behalf of ATLAS Collaboration

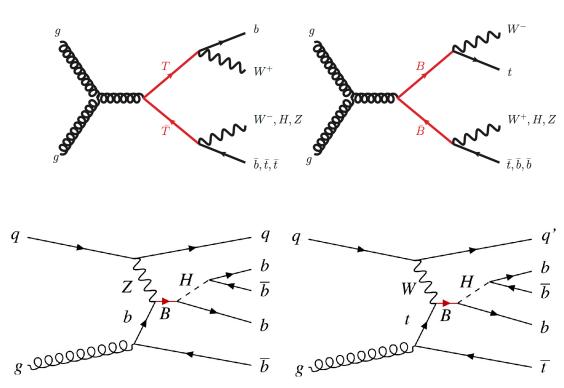
Lake Louise Winter Institute 2024



Heavy resonances at the LHC

- Many Beyond Standard Model theories predict the existence of additional particles
- Heavy resonances are predicted in many new physics models
 - Heavy vector triplet (W', Z')
 - Vector like quarks
- Would appear as a bump on flat Standard Model (SM) prediction
 - Indicates an unknown resonance particle
- LHC allows to explore ever higher masses

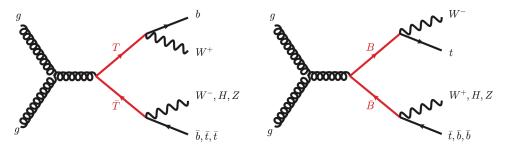
VLQ at the LHC

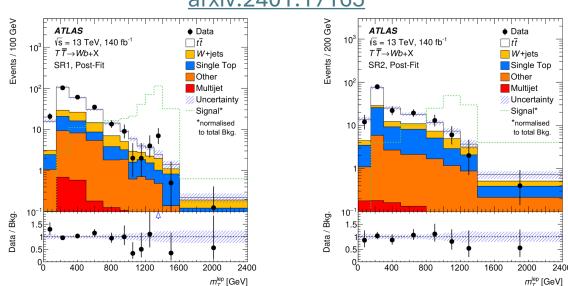

- Vector Like Quarks (VLQ) are predicted to be spin-1/2 particles that transform as a triplet under color gauge symmetry and whose left- and right-handed components both have the same electroweak quantum numbers
- Couple to the SM fermions via Yukawa couplings
 - → Interact principally with the third-generation SM quarks
- Vector-like T and B quarks
 - Vector-like equivalents of the third-generation SM quarks
 - Electric charge Q(T) = 2/3 and Q(B) = -1/3,
 - Can exist as singlets, doublets or triplets
- X and Y VLQs
 - Charges Q(X) = 5/3 and Q(Y) = -4/3 respectively
 - Can exist either in gauge doublets along with a *T* or *B* quark or in gauge triplets along with both the *T* and *B* quarks

TY of OKLAHOMA

ASTRONOMY

• At the LHC, VLQs are expected to be produced either in pairs, via the strong interaction, or singly, via the exchange of an intermediate electroweak gauge boson

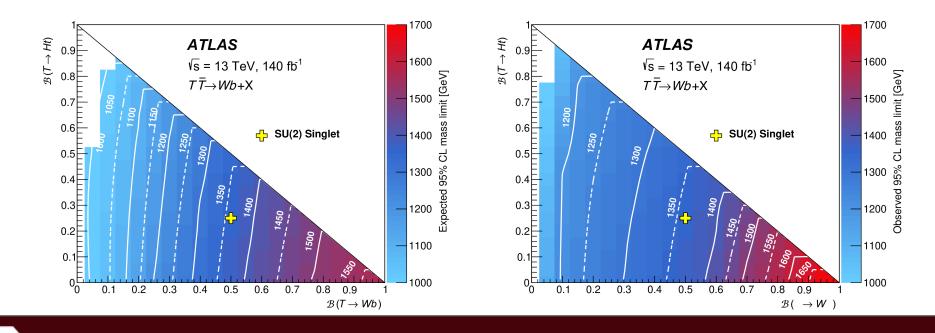

VLQ pair production search in the Wb+X final state

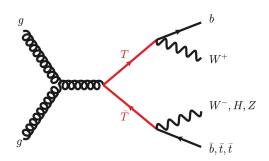

AND ASTRONOMY

- Optimised for vector-like T-quarks that decay into a Wboson and a b-quark
 - One W-boson decaying leptonically and the other hadronically
- Also considered models
 - Vector-like B-quark
 - Vector-like Y-quarks, which decay exclusively into a *W* boson and a *b*-quark
- Event selection:
 - High p_T electron or muon
 - Large E_T^{miss}
 - Large radius jet identified as W-boson
 - Multiple small radius jets: at least one of them is b-tagged
- Important discriminant used to define Signal Region and Control Region, S_T : scalar sum of the p_T of the selected small-radius jets, the lepton p_T and the E_T^{miss}

UNIVERSITY of OKLAHOMA

arxiv:2401.17165

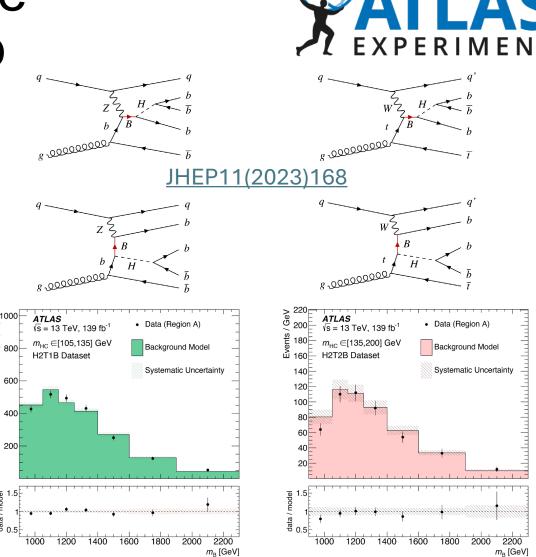

VLQ pair production search in the Wb+X final state


- VLQs can decay via a flavor-changing neutral current or a charged current
 - → T has three possible decays: $T \rightarrow Wb/Zt/Ht$

IVERSITY of OKLAHOMA

• Expected and observed 95% CL lower limits on the mass of the *T*-quark in the branching-ratio plane of $B(T \rightarrow Wb)$ versus $B(T \rightarrow Ht)$

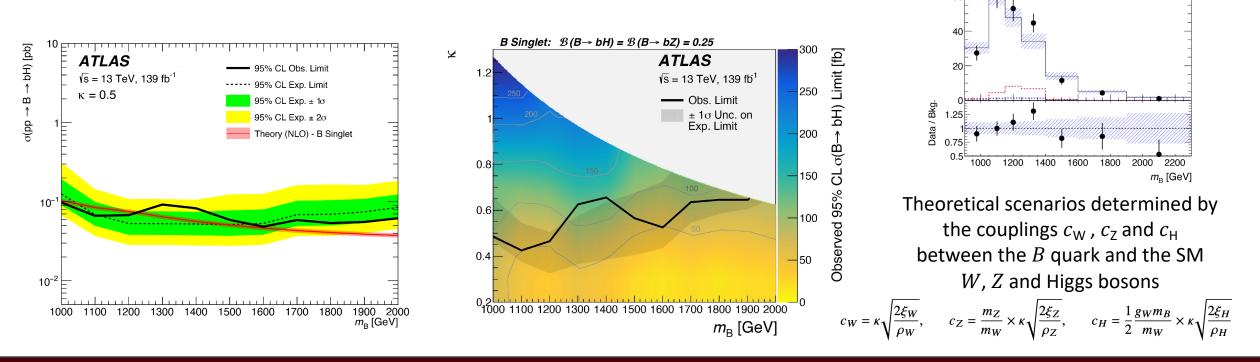
AND ASTRONOMY


arxiv:2401.17165

Search for vector-like $B \rightarrow bH$ with $H \rightarrow bb$

- Vector-like *B* quark can be produced in the resonant *s*-channel
 - Either the electroweak interaction of an initial-state *b*-quark and a *Z* boson (leading production mode for a vector-like *B* singlet)
 - Or of an initial-state *t*-quark and a *W* boson
- Strongly non-resonant single vector-like *B* quark production arises through *t*-channel processes
 - Mostly results in low-mass off-shell *B* quarks falling well outside the acceptance of the trigger selection employed by the analysis ٠
- Event preselection:
 - At least 1 large-R jet, pT > 480 GeV
 - No leptons & no $\gamma\gamma$ pairs with $m_{\gamma\gamma} \in [105, 160]$ GeV ٠
 - At least 2 track-jets associated with the large-R jet, at least one of them b-tagged
 - At least 1 small-R jet with $p_T > 300 \text{ GeV}$ •
 - ΔR (small-*R* jet, large-*R* jet) > 2.0 ٠
- Data-driven background estimate •

UNIVERSITY of OKLAHOMA PHYSICS AND ASTRONOMY


Search for vector-like $B \rightarrow bH$ with $H \rightarrow bb$

OF PHYSICS AND ASTRONOMY

- For fixed K = 0.5
- Also as a function of the resonance mass and coupling strength κ

UNIVERSITY of OKLAHOMA

08

Data

Background

Uncertainty

····· VLB_{bZB}, 1.3 TeV, $\kappa = 0.4$

---- VLB_{tWB}, 1.3 TeV, κ = 0.4

ATLAS

JHEP11(2023)1

Events / 100 GeV

120

100

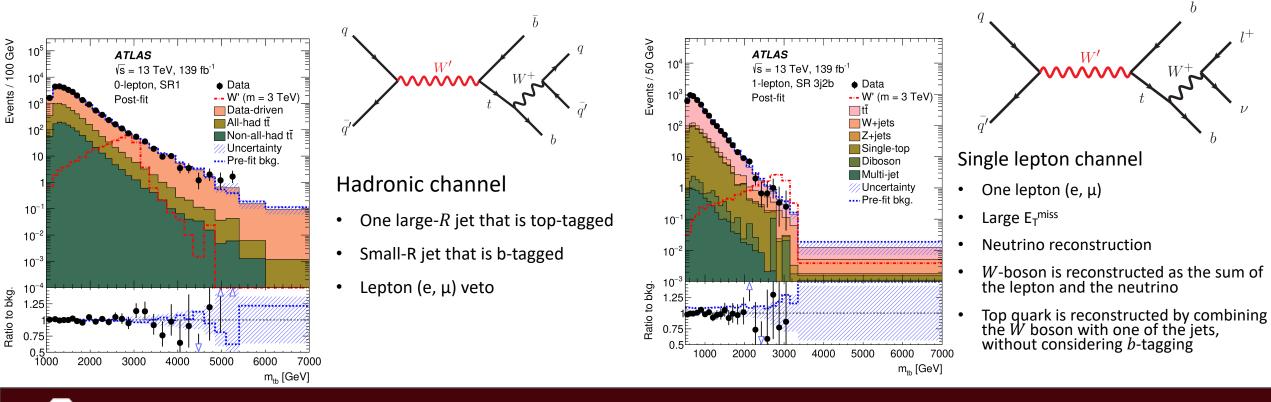
ATLAS

Post-Fit

VLB->bH(bb

Signal Region

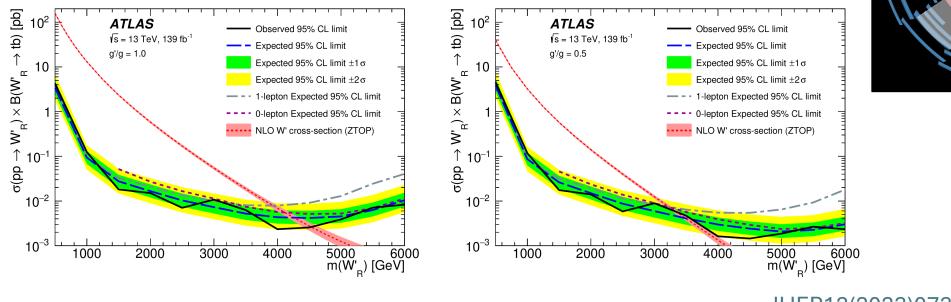
√s = 13 TeV, 139 fb



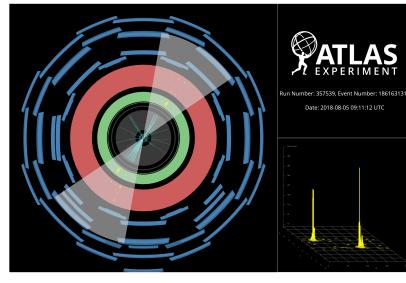
Search for W' \rightarrow tb in 0/1-lepton channel

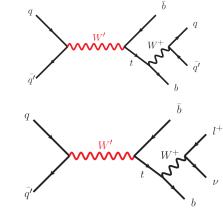
JHEP12(2023)073

- Many models (extra dimensions, strong dynamics, or a composite Higgs boson), predict new vector charged-current interactions
 - Some models predict W' bosons that preferentially couple to third-generation particles



Search for W' to tb 0/1-lepton



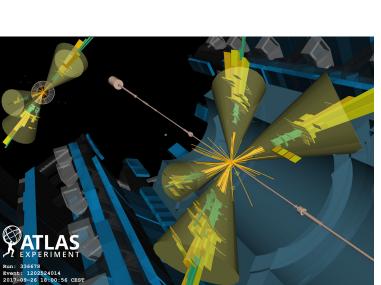

- Good agreement between the background prediction and data observed in all regions
- Results interpreted as limits on W' mass

The UNIVERSITY of OKLAHOMA

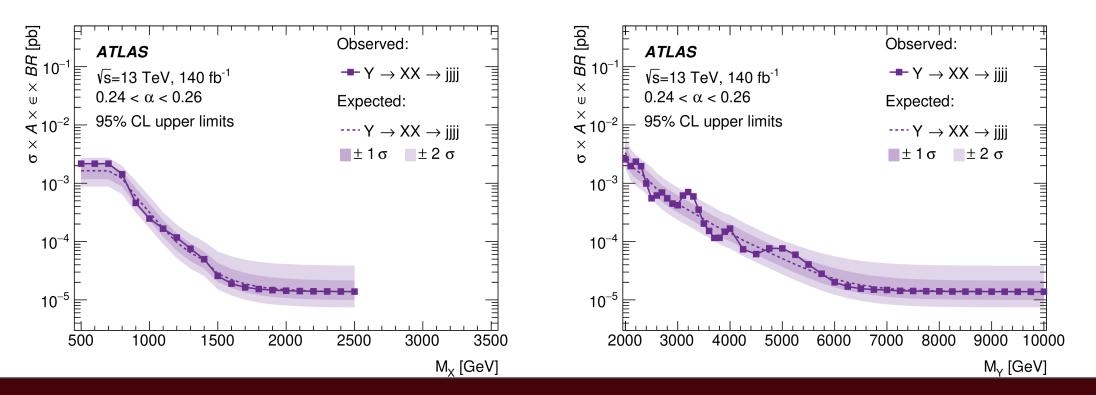
NT OF PHYSICS AND ASTRONOMY


JHEP12(2023)073

Paired dijet resonance

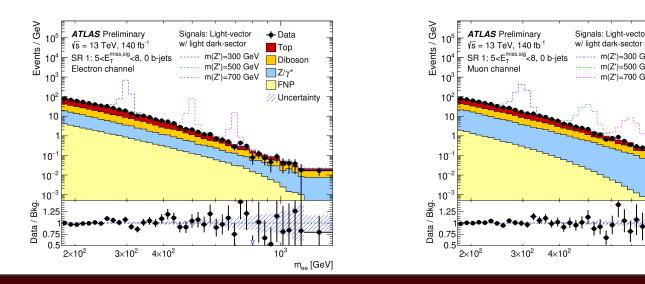


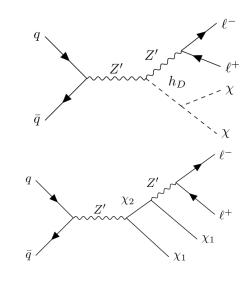
- Generic massive resonance Y that decays into two pairs of intermediate resonances X with the same mass, each decaying into two partons and so typically producing a pair of dijet system
- Resonances are searched for in the invariant mass of the tetrajet system, and in the average invariant mass of the pair of dijet systems
- Data-driven background estimate is obtained by fitting the tetrajet and dijet invariant mass distributions with a four-parameter dijet function



Paired dijet resonance

- 95% CL upper limits on the allowed cross-sections of these particles as a function <u>Phys. Rev. D 108 (2023) 112005</u> of their mass
- Several representative $\alpha = \langle m_{2j} \rangle / m_{4j}$ regions





Exclusive dilepton + E_T^{miss}

- Dark matter particles produced in association with a new neutral vector boson
- Decays of the Z' boson to same-flavor light leptons ($e^+e^-/\mu^+\mu^-$)
- Dark-Higgs model: a dark-sector Higgs boson h_D can be radiated from the Z' boson and ٠ decay to a pair of dark matter particles ($\chi \chi$)
- Light-vector case: the Z' boson has an off-diagonal coupling to the χ_1 and χ_2 dark-sector particles
 - Heavier state χ_2 decays to a lighter dark matter candidate χ_1 and a Z' •

ATLAS-CONF-2023-045

Event selection •

+ Data

_____Ζ/γ*

FNP

 10^{3}

m_{μμ} [GeV]

=500 GeV

=700 GeV

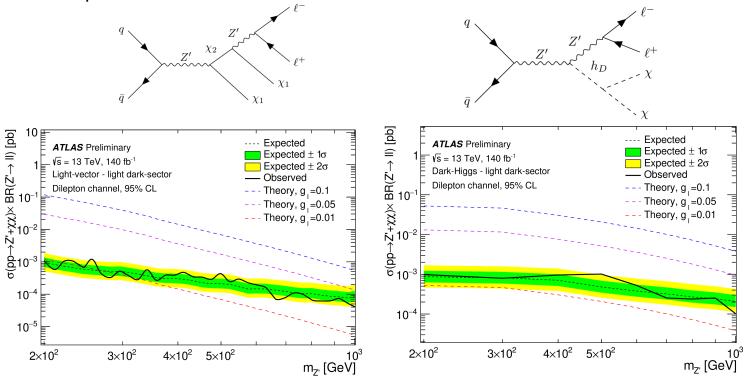
Diboson

Uncertainty

- Same flavor opposite sign leptons
- Large E_T^{miss}
- Three SR based on E_T^{miss,sig}

$$E_{\rm T}^{\rm miss, sig} = \frac{|\mathbf{p}_{\rm T}^{\rm miss}|}{\sqrt{\sigma_{\rm L}^2 (1 - \rho_{\rm LT}^2)}}$$

ERSITY of OKLAHOMA ND ASTRONOMY

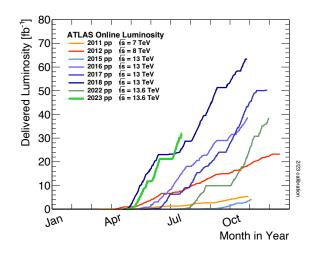

Exclusive dilepton + E_T^{miss}

ATLAS-CONF-2023-045

No significant deviations from the SM are observed

→ Derive limits as a function of the Z' mass as well as limits on the Z' coupling to leptons

	Dark Higgs	Light Vector
Light dark-sector	$m_{\chi} = 5 \text{ GeV}$	$m_{\chi_1} = 5 \text{ GeV}$
	$m_{h_{\rm D}} = 125 \text{ GeV}$	$m_{\chi_2} = m_{\chi_1} + m_{Z'} + 25 \text{ GeV}$
Heavy dark-sector	$m_{\chi} = 5 \text{ GeV}$	$m_{\chi_1} = m_{Z'}/2$
	$m_{h_{\rm D}} = m_{Z'}$	$m_{\chi_2} = 2m_{Z'}$


- Three coupling parameters considered in each model:
 - Coupling of the Z' to quarks (g_q)
 - Coupling of the Z' to leptons (g_l)
 - Coupling of the Z' to the dark-sector particles (g_{DM})
- In the dark-Higgs model the coupling g_{DM} is the coupling between the Z' and h_{D}
- In the light-vector model g_{DM} is the coupling between Z' and the dark-sector particles χ_1 and χ_2
- Couplings to quarks and leptons are assumed to be constant across generations
- Couplings considered for this search are g_{DM} = 1, g_{q} = 0.1, and g_{I} = 0.01
- Non-zero g_l introduced to allow the leptonic decay of the Z' boson

The UNIVERSITY of OKLAHOMA DEPARTMENT OF PHYSICS AND ASTRONOMY

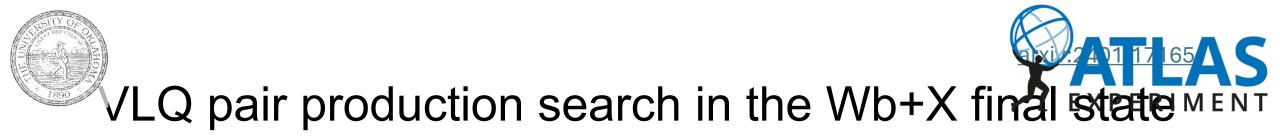
Conclusion and Outlook

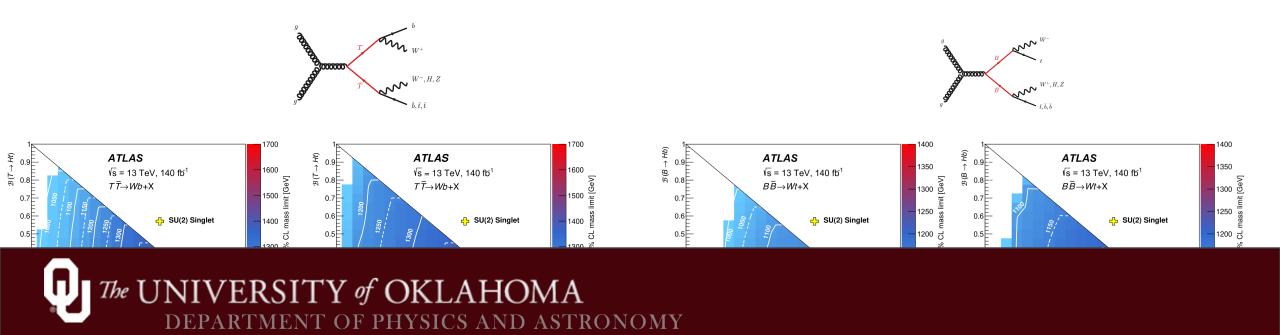
- ATLAS performed many searches for heavy resonances
- Many more to come with $\sqrt{s} = 13.6 \text{ TeV}$

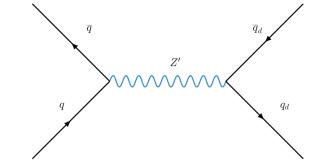
		e	lata 4	m iss	66.440	-11	••	$\int \mathcal{L} dt = 0$	3.6 – 139) fb ⁻¹	$\sqrt{s} = 13 \text{ Te}$
	Model	<i>ℓ</i> ,γ	Jets†	Т	<u></u> στιπ	-1] Lin				Reference
Extra dimen.	ADD $G_{KK} + g/q$ ADD non-resonant $\gamma\gamma$ ADD QBH ADD BH multijet RS1 $G_{KK} \rightarrow \gamma\gamma$ Bulk RS $G_{KK} \rightarrow tt$ Bulk RS $g_{KK} \rightarrow tt$ 2UED / RPP	$\begin{array}{c} 0 \ e, \mu, \tau, \gamma \\ 2 \gamma \\ - \\ - \\ 2 \gamma \\ \\ multi-channe \\ 1 \ e, \mu \\ 1 \ e, \mu \end{array}$	1 - 4 j - 2 j $\ge 3 j$ - 1 $\ge 1 b, \ge 1 J/2j$ $\ge 2 b, \ge 3 j$	Yes - - - Yes Yes	139 36.7 139 3.6 139 36.1 36.1 36.1	М _D M _b M _b M _b G _{KK} mass G _{KK} mass g _{KK} mass KK mass	4.5 2.3 TeV 3.8 Te 1.8 TeV	8.6 TeV 9.4 TeV 9.55 TeV TeV	$ \begin{array}{l} n=2 \\ n=3 \ \text{HZ} \ \text{NLO} \\ n=6 \\ n=6, \ M_D=3 \ \text{TeV}, \ \text{rot} \ \text{BH} \\ k/\overline{M}_{PI}=0.1 \\ k/\overline{M}_{PI}=1.0 \\ f/m=15\% \\ \text{Tier} (1,1), \ \mathcal{B}(A^{(1,1)} \rightarrow tt)=1 \end{array} $	2102.10874 1707.04147 1910.08447 1512.02586 2102.13405 1808.02380 1804.10823 1803.09678
Gauge bosons	$\begin{array}{l} \mathrm{SSM} \ Z' \to \ell\ell \\ \mathrm{SSM} \ Z' \to \tau\tau \\ \mathrm{Leptophobic} \ Z' \to tt \\ \mathrm{Leptophobic} \ Z' \to tt \\ \mathrm{SSM} \ W' \to t \\ \mathrm{SSM} \ W' \to t \\ \mathrm{SSM} \ W' \to t \\ \mathrm{VT} \ W' \to WZ \ \mathrm{model} \ \mathrm{B} \\ \mathrm{HVT} \ W' \to WZ \ \mathrm{model} \ \mathrm{B} \\ \mathrm{HVT} \ Z' \to WW \ \mathrm{model} \ \mathrm{B} \\ \mathrm{HVT} \ Z' \to \mu N_R \end{array}$	$\begin{array}{c} 2 \ e, \mu \\ 2 \ \tau \\ - \\ 0 \ e, \mu \\ 1 \ e, \mu \\ 1 \ \tau \\ - \\ 0 - 2 \ e, \mu \\ C 3 \ e, \mu \\ 1 \ e, \mu \\ 2 \ \mu \end{array}$	$\begin{array}{c} - \\ 2 \ b \\ \geq 1 \ b, \geq 2 \ J \\ - \\ \geq 1 \ b, \geq 1 \ J \\ 2 \ j / 1 \ J \\ 2 \ j \ (VBF) \\ 2 \ j / 1 \ J \\ 1 \ J \end{array}$	- Yes Yes Yes Yes Yes Yes Yes	139 36.1 139 139 139 139 139 139 139 139 139 80	2' mass 2' mass 2' mass 2' mass W' mass W' mass W' mass 340 GeV 2' mass M' mass 340 GeV	2.42 TeV 2.1 TeV 4.11 4.3 4.3 3.9 Ti	6.0 TeV .0 TeV TeV TeV	$\begin{array}{l} \Gamma/m = 1.2\% \\ g_V = 3 \\ g_V c_H = 1, g_F = 0 \\ g_V = 3 \\ m(N_R) = 0.5 \ \text{TeV}, g_L = g_R \end{array}$	1903.06248 1709.07242 1805.09299 2006.05138 1906.05609 ATLAS-CONF-2021-02 ATLAS-CONF-2021-04 2004.14636 2207.03925 2004.14636 1904.12679
Ū	Cl qqqq Cl ℓℓqq Cl eebs Cl μμbs Cl tttt	2 e, μ 2 e 2 μ ≥1 e,μ	2 j - 1 b 1 b ≥1 b,≥1 j	- - - Yes	37.0 139 139 139 36.1	Λ Λ Λ Λ	1.8 TeV 2.0 TeV 2.57 TeV		21.8 TeV η_{LL}^- 35.8 TeV η_{LL}^- $g_s = 1$ $g_s = 1$ $ C_{4t} = 4\pi$	1703.09127 2006.12946 2105.13847 2105.13847 1811.02305
MD	Axial-vector med. (Dirac DM) Pseudo-scalar med. (Dirac DM) Vector med. Z'-2HDM (Dirac DM Pseudo-scalar med. 2HDM+a	0 e, μ, τ, γ 0 e, μ multi-channe	2 j 1 – 4 j 2 b	- Yes Yes	139 139 139 139	m _{med} 376 GeV m _{med} 376 GeV m _{Z'}	3.8 Te 3.0 TeV 800 GeV	v	$\begin{array}{l} g_q\!=\!0.25,g_{\chi}\!=\!1,m(\chi)\!=\!10\;{\rm TeV}\\ g_q\!=\!1,g_{\chi}\!=\!1,m(\chi)\!=\!1\;{\rm GeV}\\ \tan\beta\!=\!1,g_{\chi}\!=\!0.8,m(\chi)\!=\!10\;{\rm GeV}\\ \tan\beta\!=\!1,g_{\chi}\!=\!1,m(\chi)\!=\!10\;{\rm GeV} \end{array}$	ATL-PHYS-PUB-2022-0 2102.10874 2108.13391 ATLAS-CONF-2021-03
ΓO	Scalar LO 1 ⁴⁴ gen Scalar LO 2 nd gen Scalar LO 3 rd gen Scalar LO 3 rd gen Scalar LO 3 rd gen Scalar LO 3 rd gen Vector LO mix gen Vector LO 3 rd gen	$\begin{array}{c} 2 \ e \\ 2 \ \mu \\ 1 \ \tau \\ 0 \ e, \mu \\ \geq 2 \ e, \mu, \geq 1 \ \tau \\ 0 \ e, \mu, \geq 1 \ \tau \\ \end{array}$ multi-channe $\begin{array}{c} 2 \ e, \mu, \tau \end{array}$	0 – 2 j, 2 b	Yes Yes Yes - Yes Yes Yes	139 139 139 139 139 139 139 139	LO mass LO mass LO ² mass LO ² mass LO ² mass LO ² mass LO ² mass LO ³ mass	1.8 TeV 1.7 TeV 1.49 TeV 1.24 TeV 1.43 TeV 1.26 TeV 2.0 TeV 1.96 TeV		$\begin{array}{l} \beta = 1 \\ \beta = 1 \\ \mathcal{B}(\mathrm{LQ}^{c}_{3} \rightarrow br) = 1 \\ \mathcal{B}(\mathrm{LQ}^{c}_{3} \rightarrow tr) = 1 \\ \mathcal{B}(\mathrm{LQ}^{c}_{3} \rightarrow tr) = 1 \\ \mathcal{B}(\mathrm{LQ}^{c}_{3} \rightarrow br) = 1 \\ \mathcal{B}(\mathrm{LQ}^{c}_{3} \rightarrow br) = 1 , \mathrm{YM} \ \mathrm{coupl.} \\ \mathcal{B}(\mathrm{LQ}^{c}_{3} \rightarrow br) = 1 , \mathrm{YM} \ \mathrm{coupl.} \end{array}$	2006.05872 2006.05872 2303.01294 2004.14060 2101.11582 2101.12527 ATLAS-CONF-2022-05 2303.01294
fermions	$\begin{array}{l} VLQ \ T \to Ht/Zt \\ VLQ \ Y \to Wb \\ VLQ \ B \to Hb \end{array}$	1 e, µ	i ≥1 b, ≥1 j ≥1 b, ≥3 j ≥1 b, ≥1 j 2b, ≥1 j, ≥1.	Yes Yes	139 36.1 36.1 139 36.1 139 139	T mass B mass T _{5/3} mass T mass Y mass B mass T mass	1,46 TeV 1.34 TeV 1.64 TeV 1.8 TeV 1.8 TeV 2.0 TeV 898 GeV		$\begin{array}{l} SU(2) \text{ doublet} \\ SU(2) \text{ doublet} \\ S(T_{5/3} \rightarrow Wt) = 1, c(T_{5/3}Wt) = 1 \\ SU(2) \text{ singlet}, \kappa_{T} = 0.5 \\ \mathfrak{L}(Y \rightarrow Wb) = 1, c_{R}(Wb) = 1 \\ SU(2) \text{ doublet}, \kappa_{B} = 0.3 \\ SU(2) \text{ doublet} \end{array}$	2210.15413 1808.02343 1807.11883 ATLAS-CONF-2021-04 1812.07343 ATLAS-CONF-2021-01 2303.05441
ferm.	Excited quark $q^* \rightarrow qg$ Excited quark $q^* \rightarrow q\gamma$ Excited quark $b^* \rightarrow bg$ Excited lepton τ^*	- 1γ - 2τ	2j 1j 1b,1j ≥2j		139 36.7 139 139	q* mass q* mass b* mass τ* mass	3.2 TeV	6.7 TeV 5.3 TeV 6 TeV	only u^* and d^* , $\Lambda = m(q^*)$ only u^* and d^* , $\Lambda = m(q^*)$ $\Lambda = 4.6 \text{ TeV}$	1910.08447 1709.10440 1910.08447 2303.09444
Other	Higgs triplet $H^{\pm\pm} \rightarrow \ell \ell$ Multi-charged particles Magnetic monopoles	2,3,4 e, µ 2µ 2,3,4 e, µ (SS 2,3,4 e, µ (SS 		Yes - Yes - -	139 36.1 139 139 139 34.4	№ mass N _R mass H ^{±±} mass multi-charged particle mass monopole mass	910 GeV 3.2 TeV 1.08 TeV 1.59 TeV 2.37 TeV		$\begin{split} m(W_R) &= 4.1 \text{ TeV, } g_L = g_R \\ \text{DY production} \\ \text{DY production} \\ \text{DY production, } q = 5e \\ \text{DY production, } g = 1g_D, \text{ spin } 1/2 \end{split}$	2202.02039 1809.11105 2101.11961 2211.07505 ATLAS-CONF-2022-0 1905.10130

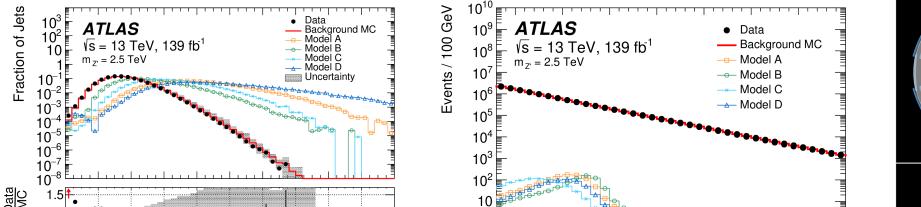
FXPFRI

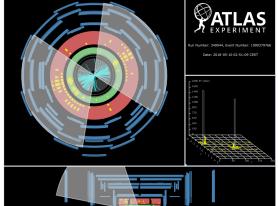
†Small-radius (large-radius) jets are denoted by the letter j (J).


Back-up




- VLQs can decay via a flavor-changing neutral current or a charged current
 - → *T* and *B* to each have three possible decays: $T \rightarrow Wb/Zt/Ht$ and $B \rightarrow Wt/Zb/Hb$
- Expected and observed 95% CL lower limits on the mass of the T-quark in the branching-ratio plane of $B(T \rightarrow Wb)$ versus $B(T \rightarrow Ht)$





- New Z' resonance
 - Decays into a pair of dark quarks which hadronise into dark hadrons before promptly decaying back as SM particles
- Selecting events containing large-R jets with high track multiplicity

The UNIVERSITY of OKLAHOMA DEPARTMENT OF PHYSICS AND ASTRONOMY