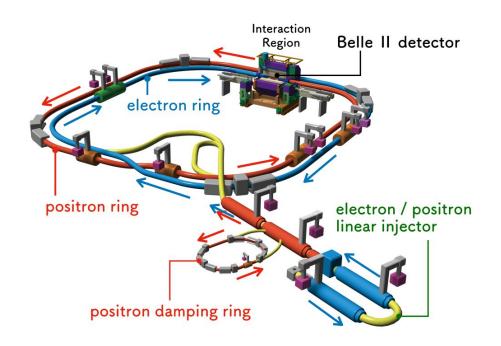
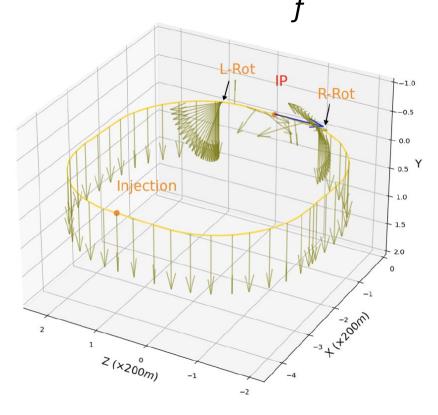
https://doi.org/10.1103/Phys. Rev. D

- wimatry

Precision e beam polarimetry

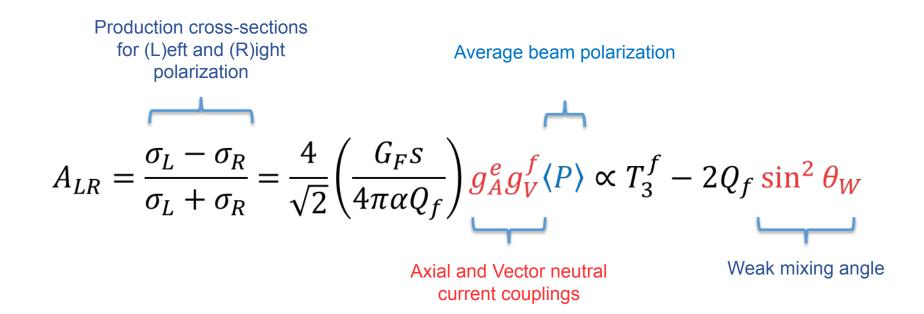
at an e⁺e⁻ B-factory using tau-pair events




Caleb Miller on behalf of BaBar

Motivation - Chiral Belle

Beam polarization is being considered as a future upgrade to SuperKEKB

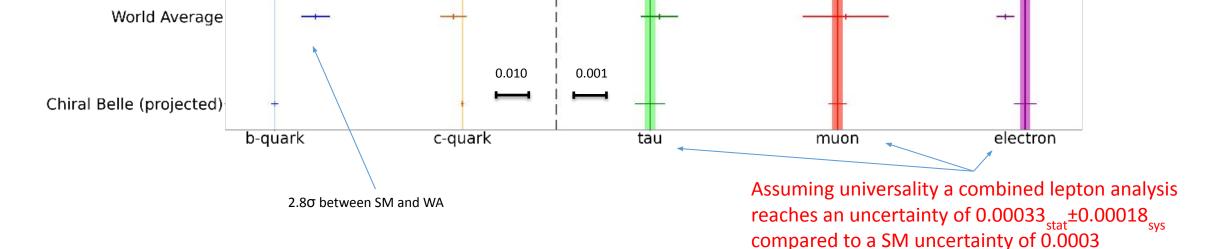


e

- Plan is to achieve a 70% polarized e⁻ beam
- Measure the polarization to within 0.5%
- Enables a wide physics program

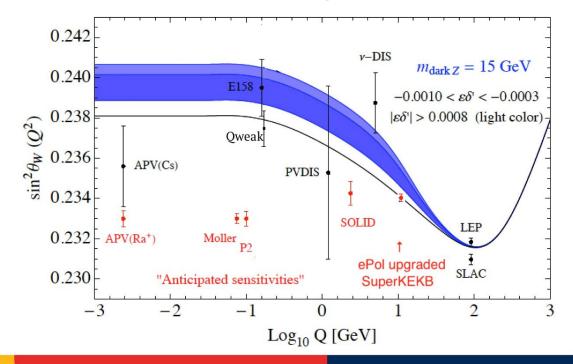
- Beam polarization is being considered as a future upgrade to SuperKEKB
- A polarized electron beam would allow Belle II to make many precise measurements of electroweak parameters. Including A_{IR} for e,μ,τ,c,b. For Born level s-channel process:

- Beam polarization is being considered as a future upgrade to SuperKEKB
- A polarized electron beam would allow Belle II to make many precise measurements of electroweak parameters. Including A_{IR} for e,μ,τ,c,b. For Born level s-channel process:


$$A_{LR} = \frac{\sigma_L - \sigma_R}{\sigma_L + \sigma_R} = \frac{4}{\sqrt{2}} \left(\frac{G_F S}{4\pi\alpha Q_f} \right) g_A^e g_V^f \langle P \rangle \propto T_3^f - 2Q_f \sin^2 \theta_W$$

	Standard Model	World Average	Chiral Belle 40ab ⁻¹
Fermion			
b-quark	-0.3437±0.0001	-0.3220 ±0.0077	0.0020(4x improvement)
c-quark	0.1920±0.0002	0.1873 ±0.0070	0.0010(7x improvement)
Tau	-0.0371±0.0003	-0.0366 ±0.0010	0.0008
Muon	-0.0371±0.0003	-0.03667±0.0023	0.0005(4x improvement)
Electron	-0.0371±0.0003	-0.03816±0.00047	0.0006

- Beam polarization is being considered as a future upgrade to SuperKEKB
- A polarized electron beam would allow Belle II to make many precise measurements of electroweak parameters. Including A_{IR} for e,μ,τ,c,b. For Born level s-channel process:


$$A_{LR} = \frac{\sigma_L - \sigma_R}{\sigma_L + \sigma_R} = \frac{4}{\sqrt{2}} \left(\frac{G_F S}{4\pi\alpha Q_f} \right) g_A^e g_V^f \langle P \rangle \propto T_3^f - 2Q_f \sin^2 \theta_W$$

Visualization of Chiral Belle projections of g_V^f vs World Averages and Standard Model(vertical line) from table

- Beam polarization is being considered as a future upgrade to SuperKEKB
- A polarized electron beam would allow Belle II to make many precise measurements of electroweak parameters. Including A_{LR} for e,μ,τ,c,b. For Born level s-channel process:

$$A_{LR} = \frac{\sigma_L - \sigma_R}{\sigma_L + \sigma_R} = \frac{4}{\sqrt{2}} \left(\frac{G_F S}{4\pi\alpha Q_f} \right) g_A^e g_V^f \langle P \rangle \propto T_3^f - 2Q_f \sin^2 \theta_W$$

Red bars show expected sensitivity of future experiments. position arbitrary.

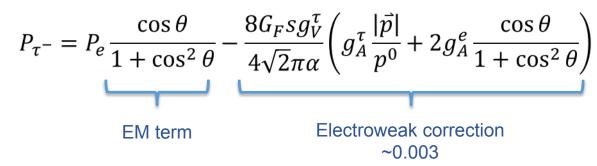
Chiral Belle expects: $\sigma(\sin^2\theta_w)\approx 0.0002 (40 \text{ ab}^{-1})$

adapted from figure 3 of H. Davoudiasl, H.S. Lee and W.J. Marciano, Phys.Rev.D 92(5),2015

6

Beam Polarization Motivation

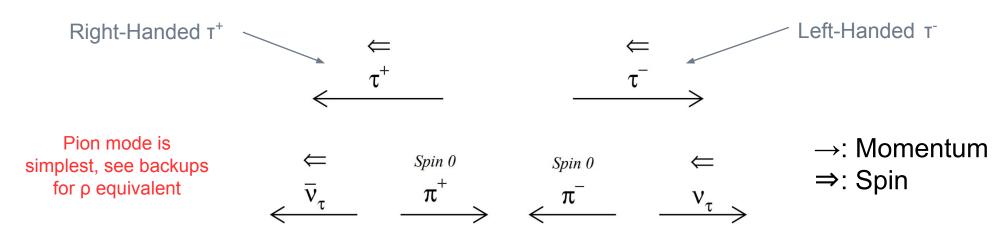
The physics projections assume a 70% polarized e beam and requires measuring the polarization to within 0.5% to meet projections


Compton polarimeters can precisely measure the polarization, but in a location removed from the main detector, this comes with an uncertainty associated with modelling the spin transport from the polarimeter to the interaction point (IP)

By using Tau Polarimetry we can extract the average beam polarization directly from the data at the IP

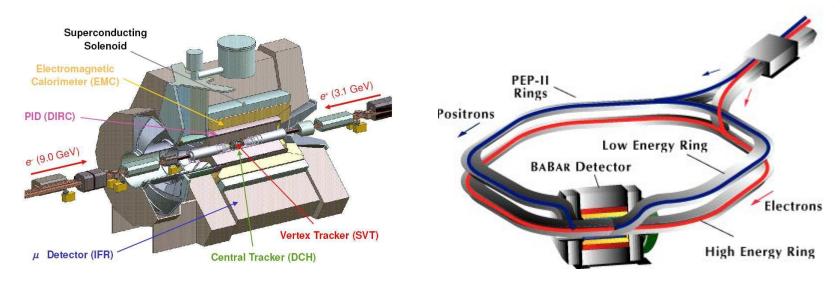
Chiral Belle White Paper https://arxiv.org/abs/2205.12847

Tau Polarimetry


The polarization of tau's (P_{τ}) produced in e^+e^- collisions at 10.58 GeV is related to the electron beam polarization (P_{ρ}) through:

Note: $\cos\theta$ defined as the polar angle of the T with respect to the electron beam

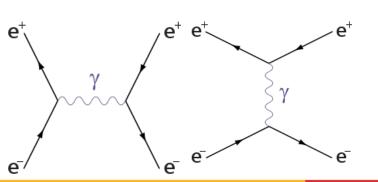
Tau polarization information can be extracted from the kinematics of the tau decay


Assumes only SM physics

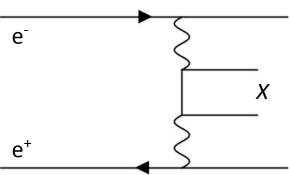
8

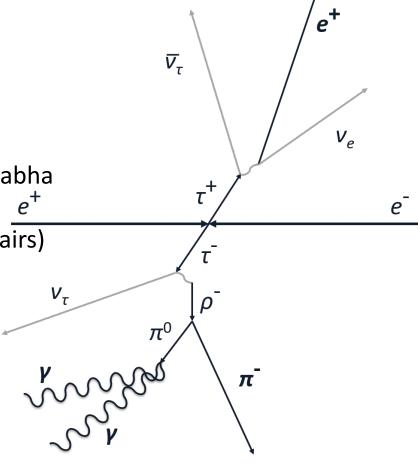
BABAR and PEP-II

BABAR and PEP-II operated at SLAC from 1999-2008

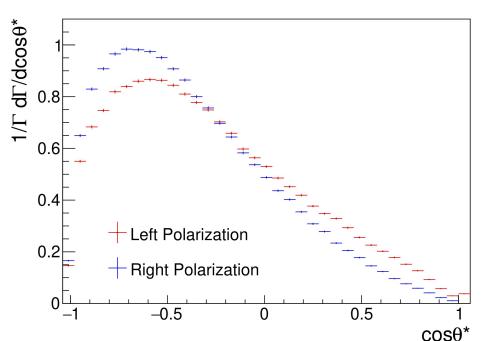


- Similar design of BABAR and Belle II also us to benchmark the technique on BABAR
 - Statistical sensitivity
 - Dominant systematic sources
- Over 6 run periods BABAR collected 432 fb⁻¹ of data on the Υ (4S) resonance
- PEP-II collided electrons and positrons together at 9.0 and 3.1 GeV
- No beam polarization is expected at PEP-II

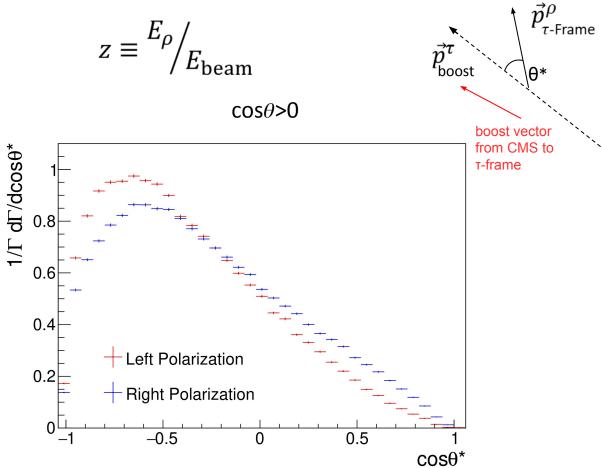

Tau Event Selection


- Selected tau events in a 1v1 topology, (ρ vs. e or μ)
 - τ to ρ has large branching fraction, lepton for clean tag
- Signal candidates are defined as a charged particle with a π^0
- qq events are eliminated with the lepton requirement
- Angular cuts and a minimum p_T of 350 MeV reduce two photon and Bhabha contamination e^+
- Results in a 99.9% pure tau-pair sample (0.05% Bhabha, 0.05% muon pairs)
- 88% of selected events contain a $T^{\pm} \to \Pi^{\pm}\Pi^{0}V_{T}$ decay
 - 12% other hadronic decays
- ~5.5 Million tau-pairs in final selection

Bhabha process


10

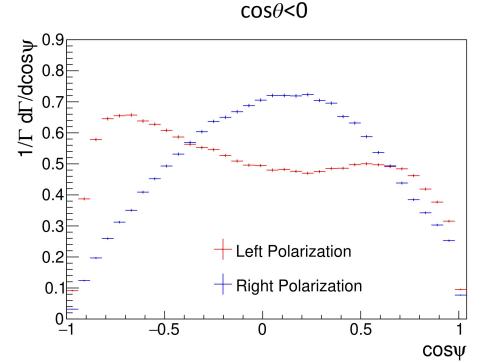
Polarization Observables


Polarization sensitivity in a rho decay is maximized by analyzing two angular variables² in addition to $\cos\theta$

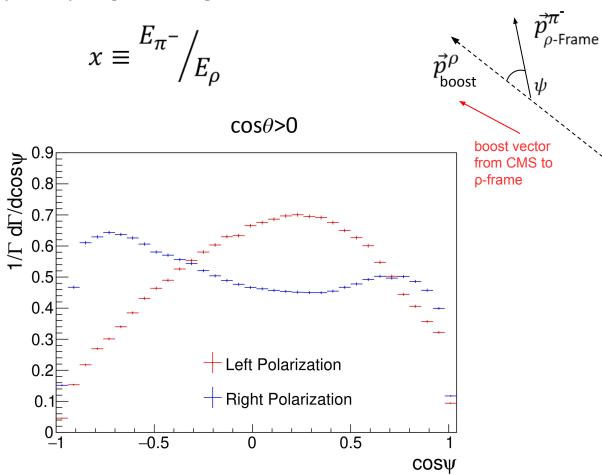
$$\cos \theta^* = \frac{2z - 1 - m_\rho^2 / m_\tau^2}{1 - m_\rho^2 / m_\tau^2}$$

 $\cos\theta$ <0

² K. Hagiwara, A. Martin, D. Zeppenfeld, Tau Polarization Measurements at LEP and SLC, Phys. Lett. B. 235, 1998, DOI: 10.1016/0370-2693(90)90120-U

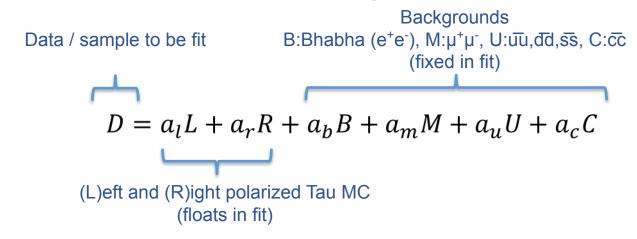

11

Polarization Observables


Polarization sensitivity in a rho decay is maximized by analyzing two angular variables² in

addition to $cos\theta$

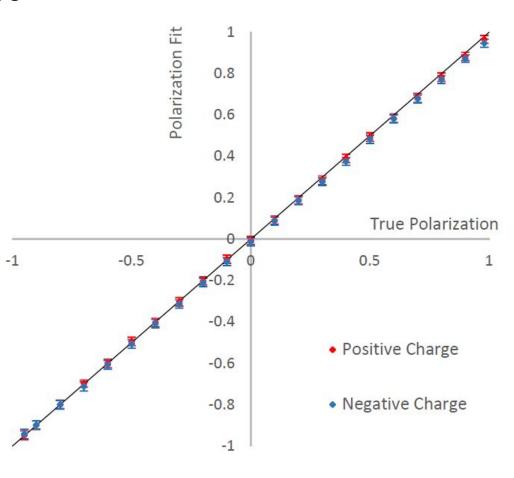
$$\cos \psi = \frac{2x - 1}{\sqrt{1 - 4 \, m_{\pi}^2 / m_{\rho}^2}}$$



² K. Hagiwara, A. Martin, D. Zeppenfeld, Tau Polarization Measurements at LEP and SLC, Phys. Lett. B. 235, 1998, DOI: 10.1016/0370-2693(90)90120-U

Polarization Fit

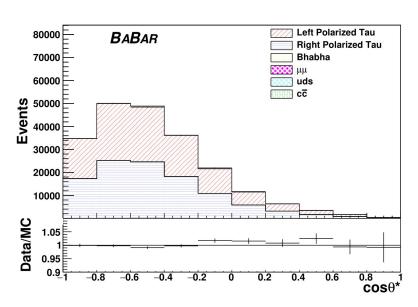
- To extract the average beam polarization from a data set we employ a binned maximum likelihood fit using Barlow and Beeston³ template fit methodology
- Data and MC is binned in 3D histograms of $\cos\theta^*$, $\cos\psi$, and $\cos\theta$
- Tau MC was produced for a left and right polarized electron beam
- The data is fit as a linear combination of the histograms

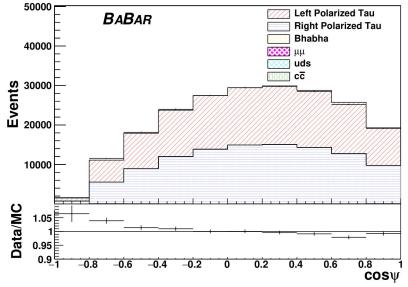

a _l	0.499
a _r	0.499
a _b	3.8x10 ⁻⁵
a _m	1.4x10 ⁻³
a _u	3.8x10 ⁻⁴
a _c	4.8x10 ⁻⁵

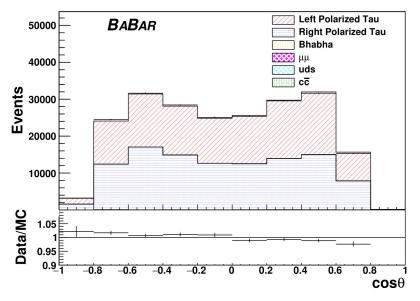
$\langle P \rangle$	$\equiv \epsilon$	a_l	$-a_{\gamma}$
---------------------	-------------------	-------	---------------

³ R. Barlow, C. Beeston; Computer Physics Communications, Volume 77, Issue 2, 1993, Pages 219-228, https://doi.org/10.1016/0010-4655(93)90005-W

Beam Polarization MC "Measurement"


- As PEP-II had no beam polarization we performed MC studies of the polarimetry technique for arbitrary beam polarization states for validation of the method
- This is done by splitting each of the polarized tau MC samples in half
- One half of each is used to perform the polarization fit
- The other half is used to mix specific beam polarization states
 - e.g. 70% polarized = 85% left +15% right
- Simulated beam polarization states are produced in steps of 10% beam polarization
- We found the fit responded well and was able to correctly measure any designed beam state




Example Fit Result

Sample	Positive	Negative	Total
Run 3 (32.28 fb ⁻¹)	0.0151±0.0120	-0.0047±0.0120	0.0048±0.0083

- Fit result projected to each of the fit variables
- Result from Run 3 fit, Negative charged signals
- <P>=0.0048

Full Measurement

 Performing the measurement on the full 424.2 fb⁻¹

Sample	Luminosity (fb ⁻¹)	Average Polarization
Run 1	20.4	-0.0014±0.0100
Run 2	61.3	0.0041±0.0059
Run 3	32.3	0.0048±0.0083
Run 4	99.6	-0.0011±0.0049
Run 5	132.3	0.0052±0.0045
Run 6	78.3	0.0084±0.0062
Total	424.2	0.0035±0.0024

Final measurement:

$$\langle P \rangle = 0.0035 \pm 0.0024_{\text{stat}} + 0.0029_{\text{sys}}$$

Source	${\rm Run}\ 1\ {\rm Run}\ 2\ {\rm Run}\ 3\ {\rm Run}\ 4\ {\rm Run}\ 5\ {\rm Run}\ 6$	Combined
π^0 efficiency	0.0025 0.0016 0.0013 0.0018 0.0006 0.0017	0.0013
Muon PID	$0.0018 \ 0.0018 \ 0.0029 \ 0.0011 \ 0.0006 \ 0.0016$	0.0012
Split-off modeling	$0.0015\ 0.0017\ 0.0016\ 0.0006\ 0.0016\ 0.0020$	0.0011
Neutral energy calibration	$0.0027\ 0.0012\ 0.0023\ 0.0009\ 0.0014\ 0.0008$	0.0010
π^0 mass	$0.0018 \ 0.0028 \ 0.0010 \ 0.0005 \ 0.0004 \ 0.0004$	0.0008
ρ decay collinearity	$0.0015 \ 0.0009 \ 0.0016 \ 0.0007 \ 0.0005 \ 0.0005$	0.0007
π^0 likelihood	$0.0015 \ 0.0009 \ 0.0015 \ 0.0006 \ 0.0003 \ 0.0010$	0.0006
Electron PID	$0.0011\ 0.0020\ 0.0008\ 0.0006\ 0.0005\ 0.0001$	0.0005
Particle transverse momentum	$0.0012\ 0.0007\ 0.0009\ 0.0002\ 0.0003\ 0.0006$	0.0004
Boost modeling	$0.0004\ 0.0019\ 0.0003\ 0.0004\ 0.0004\ 0.0004$	0.0004
Momentum calibration	$0.0001\ 0.0014\ 0.0005\ 0.0002\ 0.0001\ 0.0003$	0.0004
Max EMC acceptance	$0.0001\ 0.0011\ 0.0008\ 0.0001\ 0.0002\ 0.0005$	0.0003
au direction definition	$0.0003 \ 0.0007 \ 0.0008 \ 0.0003 \ 0.0001 \ 0.0004$	0.0003
Angular resolution	$0.0003 \ 0.0008 \ 0.0003 \ 0.0003 \ 0.0002 \ 0.0003$	0.0003
Background modeling	$0.0005 \ 0.0006 \ 0.0010 \ 0.0002 \ 0.0003 \ 0.0003$	0.0003
Event transverse momentum	$0.0001 \ 0.0013 \ 0.0005 \ 0.0002 \ 0.0002 \ 0.0004$	0.0003
Momentum resolution	$0.0001 \ 0.0012 \ 0.0004 \ 0.0002 \ 0.0001 \ 0.0005$	0.0003
ρ mass acceptance	$0.0000\ 0.0011\ 0.0003\ 0.0001\ 0.0002\ 0.0005$	0.0003
au branching fraction	$0.0001\ 0.0007\ 0.0004\ 0.0002\ 0.0002\ 0.0002$	0.0002
$\cos \theta^{\star}$ acceptance	$0.0002\ 0.0006\ 0.0004\ 0.0001\ 0.0001\ 0.0004$	0.0002
$\cos \psi$ acceptance	$0.0002\ 0.0003\ 0.0002\ 0.0002\ 0.0002\ 0.0003$	0.0002
Total	0.0058 0.0062 0.0054 0.0030 0.0026 0.0038	0.0029

https://doi.org/10.1103/PhysRevD.108.092001

Conclusions

 BABAR has implemented the first application of the new Tau Polarimetery technique to measure the PEP-II average beam polarization

$$\langle P \rangle = 0.0035 \pm 0.0024_{\text{stat}} + 0.0029_{\text{sys}}$$

- Identified 21 sources of systematic uncertainty
- Modelling/Understanding of neutral processes dominates the largest systematics
- Tau Polarimetry could be applied at other e⁺e⁻ colliders interested in polarization
- Final uncertainty exceeds Chiral Belle assumptions suggesting the experiment could make even more precise measurements

Thank You!

https://doi.org/10.1103/PhysRevD.108.092001

Backup Slides

Polarimetry and cross-sections

- If both beams are polarized the cross-section enhancement adds additional complementary information to the polarization knowledge
- Interaction matrix helps to visualize the process:

e+\e-	L-	R⁻
R ⁺	R ⁺ L ⁻	R⁺R⁻
L ⁺	L ⁺ L ⁻	L⁺R⁻

- Only the L⁺R⁻ and R⁺L⁻ crossing result in a collision, the L⁺L⁻ and R⁺R⁻ crossings continue down the beam pipe
- For unpolarized beams L=R=0.5, and each quadrant represent 25% of crossings
- The average beam polarization, <P>, is (R⁺L⁻-L⁺R⁻)/(R⁺L⁻+L⁺R⁻)
- The cross-section multiplier, σ , is $(R^+L^-+L^+R^-)/(R^+L^-_{unpolarized}+L^+R^-_{unpolarized})$

70% polarized e⁻ beam

$$\langle P \rangle = \frac{0.5 * 0.85 - 0.5 * 0.075}{0.5 * 0.85 + 0.5 * 0.075} = 0.7$$

$$\sigma = \frac{0.425 + 0.075}{0.25 + 0.25} = 1$$

Polarimetry and cross-sections

- <P> is the variable physics is sensitive to, e.g. 10% increase in <P> is a 10% increase in A_{IR}
- Polarizing both beams enhances <P> and cross-section

70% pc	larized	e ⁻ beam
--------	---------	---------------------

e+\e-	0.85	0.15
0.5	0.425	0.075
0.5	0.425	0.075

$$P> = 0.7$$

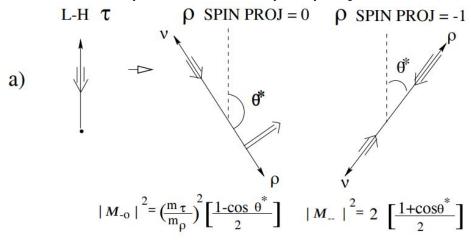
 $\sigma = 1$

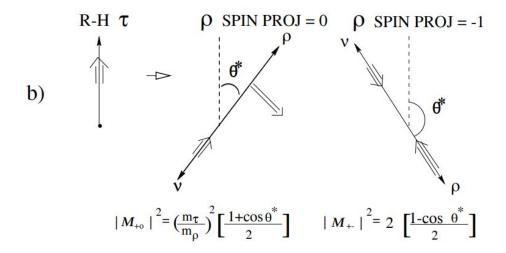
80% polarized e⁻ beam 30% polarized e⁺ beam

e+\e-	0.90	0.10
0.65	0.585	0.065
0.35	0.315	0.035

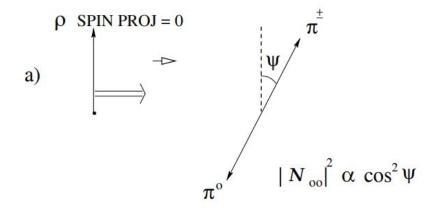
$$\langle P \rangle = 0.887$$

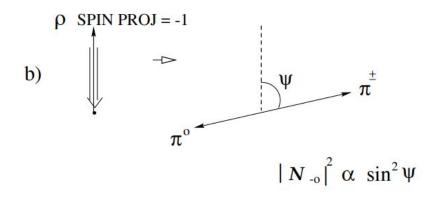
70% polarized e⁻ beam 70% polarized e⁺ beam


e+\e-	0.85	0.15
0.85	0.722	0.128
0.15	0.128	0.022

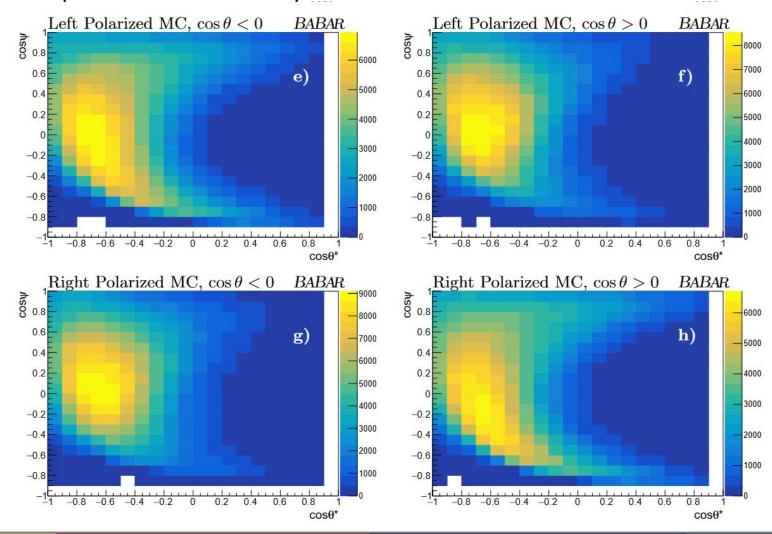

$$\langle P \rangle = 0.946$$

 $\sigma = 1.49$


- Polarizing both beams significantly improves the physics sensitive <P>
- Also gain additional statistics through cross-section enhancement
- cross-section is not unique to a specific <P> but is highly correlated
 - 75% polarized e^- , 65.3% polarized e^+ , results in <P>=0.942, σ =1.49
- Precision measurements of production cross-sections can cross-check Tau Polarimetry technique and vice-versa

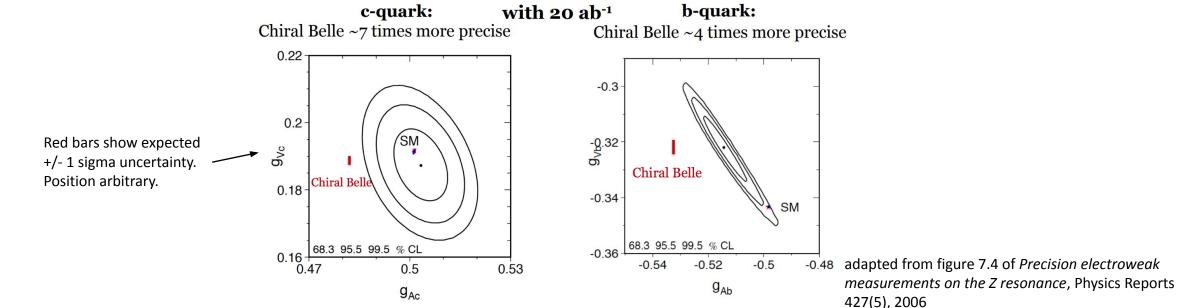

Rho Spin Analysis

The rho complicates the spin projections, which necessitates two variables to extract the polarization



From Dr. Manuella Vincter, PhD thesis, UVIC, 1996

2D Projections


2D projections of the polarization sensitivity

Beam Polarization Motivation

- Beam polarization is being considered as a future upgrade to SuperKEKB
- A polarized electron beam would allow Belle II to make many precise measurements of electroweak parameters. Including A_{IR} for e,μ,τ,c,b. For Born level s-channel process:

$$A_{LR} = \frac{\sigma_L - \sigma_R}{\sigma_L + \sigma_R} = \frac{4}{\sqrt{2}} \left(\frac{G_f s}{4\pi\alpha Q_f} \right) g_A^e g_V^f \langle P \rangle \propto T_3^f - 2Q_f \sin^2 \theta_W$$

23