

Latest Results of the CUORE Experiment

Rebecca Kowalski on behalf of the CUORE Collaboration From Johns Hopkins University

> Lake Louise Winter Institute February 22, 2023



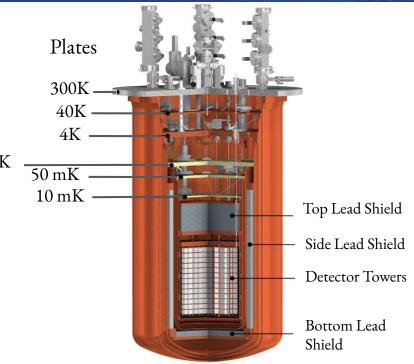
Searching for neutrinoless double beta decay

*Image courtesy of: APS Alan Stonebraker

- Double beta decay: rare second order process in even-even isotopes where single beta decay is energetically forbidden
 - Observable half life ~ 10^{18} 10^{24} years
- Neutrinoless double beta decay
 - \circ Lepton number violation
 - Implies majorana mass of

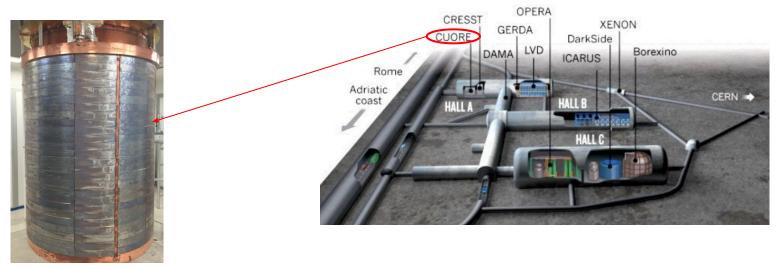
neutrino

Meet the CUORE Collaboration



The CUORE Experiment

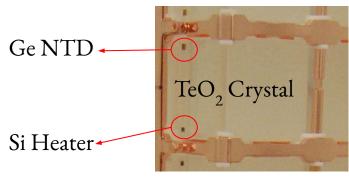
- The Cryogenic Underground Observatory for Rare
 Events 600 mK
- Array of 988 natural TeO₂ crystals, 0.75 kg each
 206 kg ¹³⁰Te
- Cryogenically cooled to ~ 10 mK
 - 5 pulse tubes to 4.2 K
 - Dilution Unit from Leiden Cryogenics: 4 µW
 cooling at 10 mK
- Physics goal: Search for neutrinoless double beta decay of ¹³⁰Te
 - Q value of 2527.52 keV
 - Sensitivity $\propto \sqrt{\frac{MT}{B\Delta E}}$

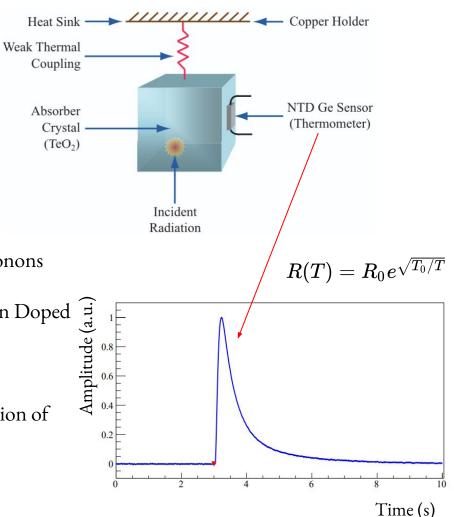

CUORE at LNGS

• Located at Gran Sasso National Laboratories in

Assergi Italy

- Underneath Gran Sasso mountain
 - \circ ~3600 w.m.e. overburden
 - Muon flux ~3 × $10^{-8} \mu$ / (s cm⁻²) [1: MACRO.]

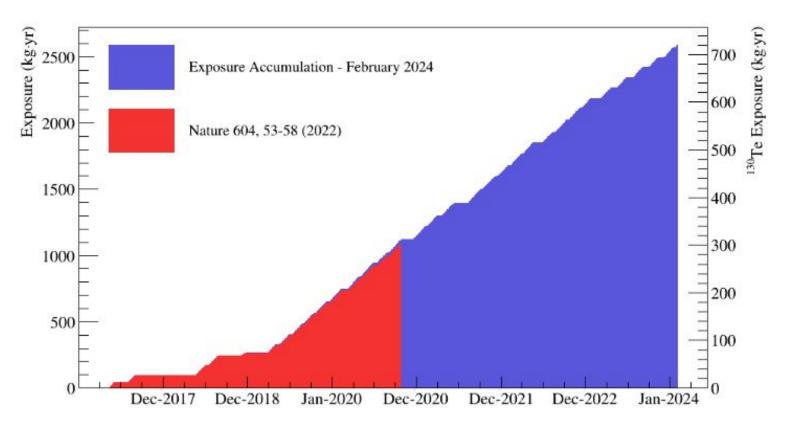



Bolometric Technique

- Energetic interaction inside crystal
 - Increase of temperature caused by thermal phonons
- Electric signal read out from Neutron Transmutation Doped Ge sensor
- Temperature detected by NTD \propto energetic interaction of

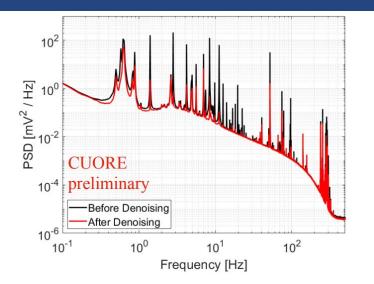
event

- $\circ \quad \Delta T = \Delta E / C(T) \sim 100 \,\mu K / MeV$
- \circ C(T) \propto T³

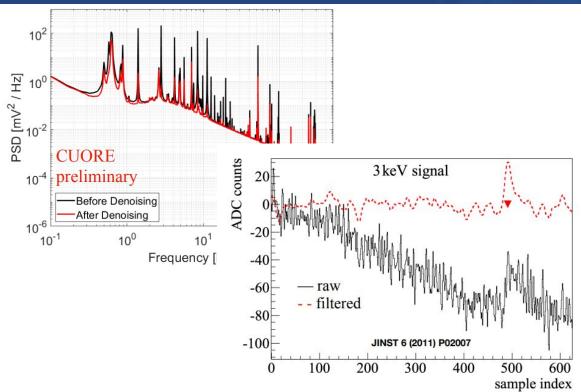


Current Status of Data Collection

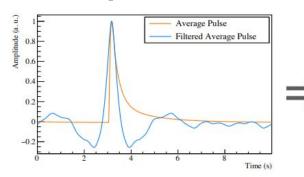
- Currently collected > 2 tonne-years of exposure!
- Steady data collection since early 2019
- Ongoing data collection with ~2 month long physics datasets
 - Calibration periods at the start and end of these datasets

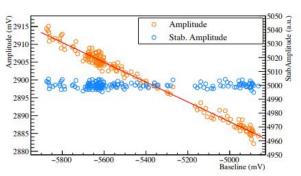


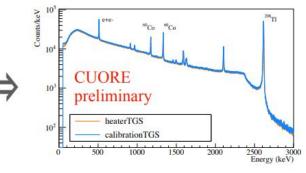
- 1. Denoising
- 2. Optimum filtering
- 3. Offline retriggering
- 4. Energy reconstruction
- 5. Quality Cuts


- 1. Denoising
- 2. Optimum filtering
- 3. Offline retriggering
- 4. Energy reconstruction
- 5. Quality Cuts


- 1. Denoising
- 2. Optimum filtering
- 3. Offline retriggering
- 4. Energy reconstruction
- 5. Quality Cuts

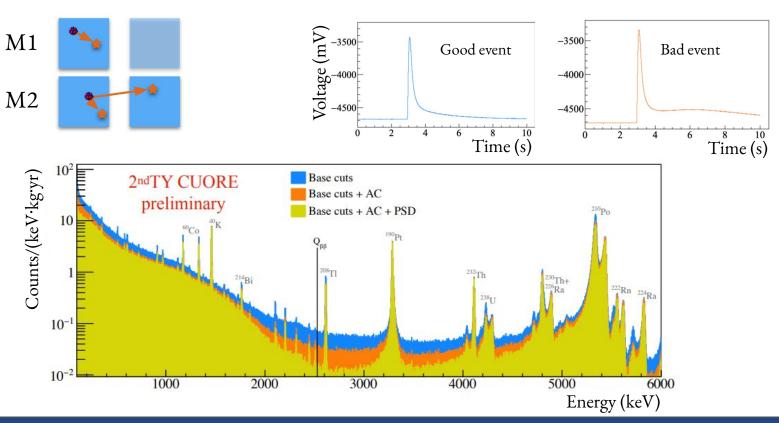



- 1. Denoising
- 2. Optimum filtering
- 3. Offline retriggering
- 4. Energy reconstruction
- 5. Quality Cuts


Amplitude Evaluation

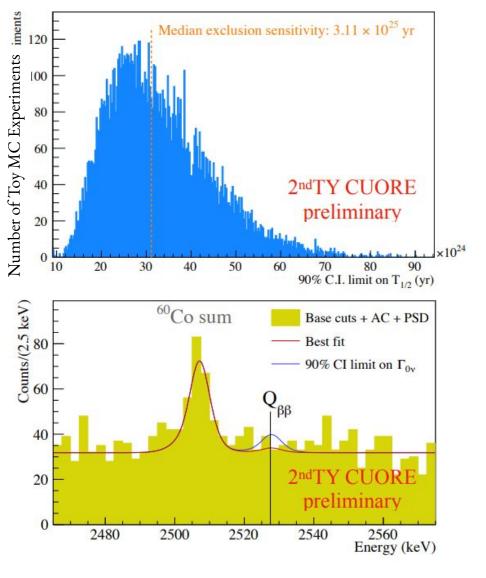
Thermal Gain Stabilization

Energy Calibration



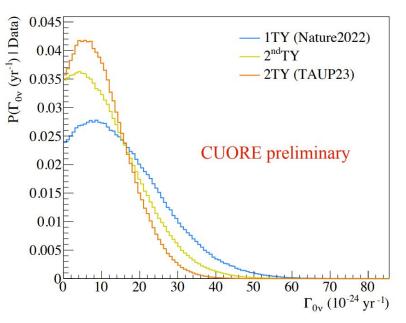
Quality Cuts

- Anti-coincidence (AC) selection
 - Expect single site (M1) events of $0\nu\beta\beta$ events ~88% containment efficiency according to MC

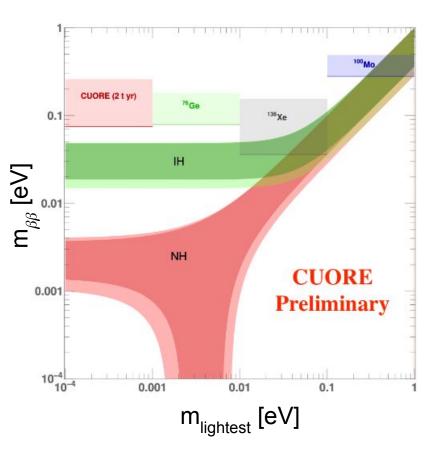

- Pulse shape discrimination (PSD)
 - Using principal component analysis techniques

Results on 2nd Tonne Year

- Region of Interest: [2465, 2575] keV
 - \circ $0\nu\beta\beta$ decay rate
 - \circ ⁶⁰Co decay rate
 - Flat background
- Bayesian analysis using MCMC* techniques
- Exclusion sensitivity
 - 10⁴ MC toy experiments on background only hypothesis
 - \circ Median sensitivity of 3.1 \times 10²⁵ yr (90% C.I.)
- Unblinded fit:
 - No evidence of neutrinoless double beta decay
 - Background Index = $1.3 \times 10^{-2} \text{ cts/keV/kg/yr}$
 - Best fit decay rate $\Gamma_{0\nu} < 2.5 \times 10^{-26} \,\mathrm{yr^{-1}} (90\%$ C.I.)
 - Half life limit $T^{0\nu}_{1/2} > 2.7 \times 10^{25}$ yr (90% C.I.)


* Markov Chain Monte Carlo

2 Tonne Year Results


- Combine 2nd TY with 1 TY results
 - Nature 604, 53-58 (2022).
- Total analyzed exposure: 2023 kg · yr
- Best fit decay rate $\Gamma_{0v} < 2.1 \times 10^{-26} \, \text{yr}^{-1} (90\% \, \text{C.I.})$
- No evidence of neutrinoless double beta decay observed
- Half life limit $T_{1/2}^{0\nu} > 3.3 \times 10^{25}$ yr (90% C.I.)
- Effective Majorana mass limit: m_{BB} < 75-255 meV
- Stay tuned for full analysis!
 - Reprocess 1st TY of data with improved analysis techniques
 - Repeat fit

Conclusions

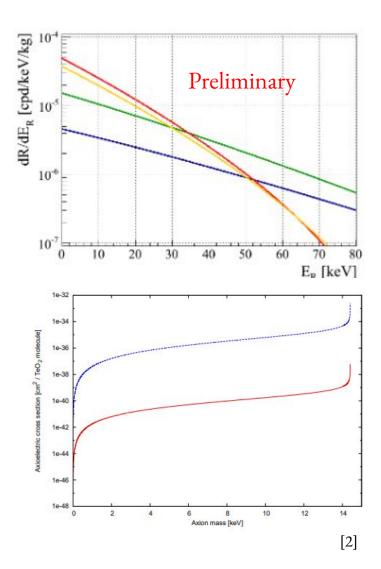
- CUORE collected > 2 tonne years
 exposure and is still stably collecting data
- Plan for final exposure of 3 tonne year
 TeO₂ by 2025
- Next generation: CUORE Upgrade with
 Particle IDentification (CUPID)
 - \circ See talk by J. Torres

Citations

[1] MACRO Coll., M. Ambrosio et al., Phys. Rev. D 52, 3793, 1995

[2] Search for 14.4 kev solar axions from M1 transition of 57fe with cuore crystals. (2013). Journal of Cosmology and Astroparticle Physics, 2013(05), 007–007. https://doi.org/10.1088/1475-7516/2013/05/007

[3] D. Q. Adams *et al.* (CUORE Collaboration), Nature 604, 53-58 (2022).


BACK UP

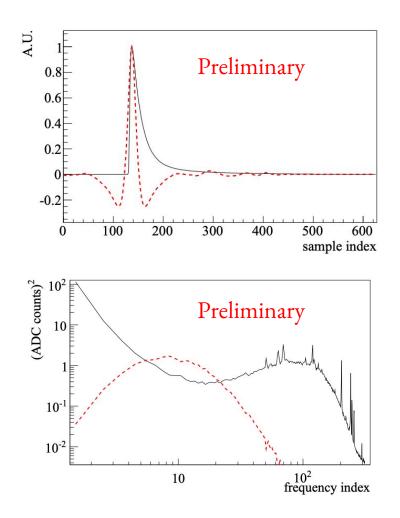
Other Analyses with CUORE

- Low energy searches
 - WIMP like dark matter
 - Solar Axions
 - ¹²³Te Electron Capture
- High Multiplicity analyses
 - Tri-nucleon decay
 - Muon background studies
 - Etc.
- Background Model Work
 - Characterization of CUORE background model
- Other Rare Processes
 - \circ ^{128/130}Te $2\nu\beta\beta$ and $0\nu\beta\beta$
- Detector Response
- More!

Optimum Filter

- A matched filter algorithm
 - Takes an expected signal shape and an expected noise shape
 - Fourier transforms time series to frequency space
 - Filter suppresses non signal shapes and maintains amplitude of signal (improved signal to noise ratio)

Expected Signal


$$H(\omega_k) = h \frac{s^*(\omega_k)}{N(\omega_k)} e^{-j \,\omega_k i_M}.$$

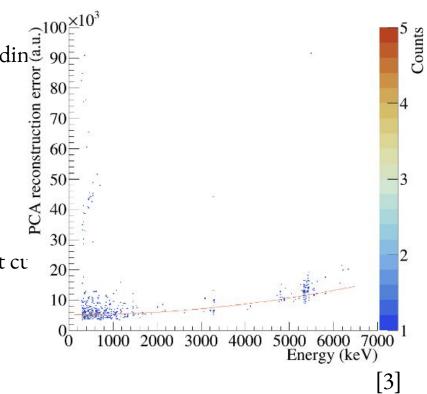
Expected Noise

Filter Noise Power Spectrum $N_f(\omega_k) = h^2 \frac{|s(\omega_k)|^2}{N(\omega_k)},$

$$\sigma_f^2 = \sum_k N_f(\omega_k) = h.$$

Filter Resolution

• Optimum Trigger: triggers when amplitude is $N\sigma_f$ over baseline

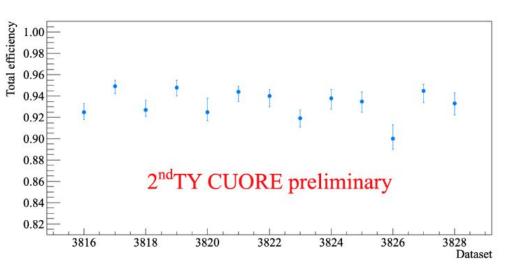


Pulse Shape Discrimination

- Principal Component Anatysis means. Treat each channel's average pulse like it is a leadin 90°_{90} principle component Define "reconstruction error" for each event x using principle component w $\sqrt{\sum n (x + w)w_i)^2}$

$$\circ \quad RE = \sqrt{\sum_{i=1}^n (x_i - (x \ \cdot w)w_i)^2}$$

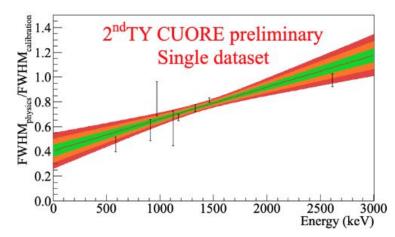
Normalize reconstruction error vs energy to get cu

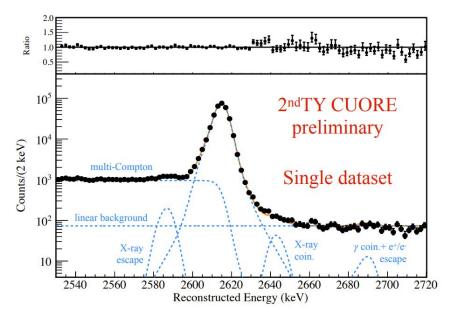


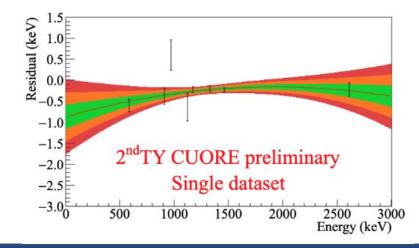
P

Efficiencies

- Evaluated using heater pulses
 - Trigger efficiency
 - Pile up efficiency
 - Energy reconstruction efficiency
- PSA Efficiency
- Anti Coincidence Efficiency
- Containment efficiency (from simulation)






Detector Response Model

- Sum of three Gaussians at 2615 keV line in calibration data
 - Fit simultaneously with nearby structures
 - $\circ \Delta E_{2615} = 7.43 \pm 0.37 \text{ keV}$
- Fit peaks in physics data
- Scale resolution and bias to $Q_{\beta\beta}$
 - $\circ ~\Delta E_{Q_{etaeta}} = 7.26^{+0.43}_{-0.47} {
 m keV}$

$$\circ \; E_{{
m bias}Q_{etaeta}} = -0.11^{+0.19}_{-0.25} {
m keV}$$

Fit Method

• Bayesian method

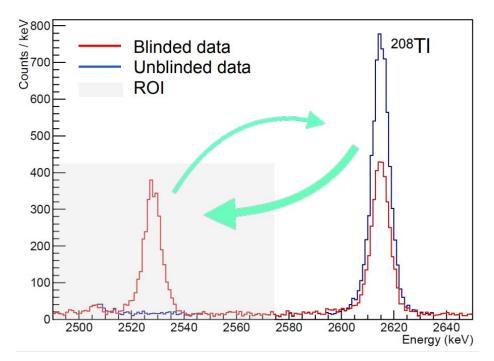
$$\circ \quad P(\stackrel{
ightarrow}{ heta},lpha|D) = rac{\mathcal{L}(D|\stackrel{
ightarrow}{ heta},lpha)\pi(\stackrel{
ightarrow}{ heta},lpha)}{\int d\stackrel{
ightarrow}{ heta} dlpha\pi(\stackrel{
ightarrow}{ heta},lpha)\mathcal{L}(D|\stackrel{
ightarrow}{ heta},lpha)}$$

• Likelihood model:

$$_{\circ} \quad \mathcal{L}(E_{i}|\overrightarrow{\theta}) = \prod_{Ds} \prod_{Ch} [\tfrac{e^{-\lambda}\lambda^{n}}{n!} \prod_{i} (\tfrac{s}{\lambda} \mathrm{pdf}_{0\nu}(E_{i}|\overrightarrow{\theta}) + \tfrac{c}{\lambda} \mathrm{pdf}_{^{60}\mathrm{Co}}(E|\overrightarrow{\theta}) + \tfrac{b}{\lambda} \tfrac{1}{\Delta E})]$$

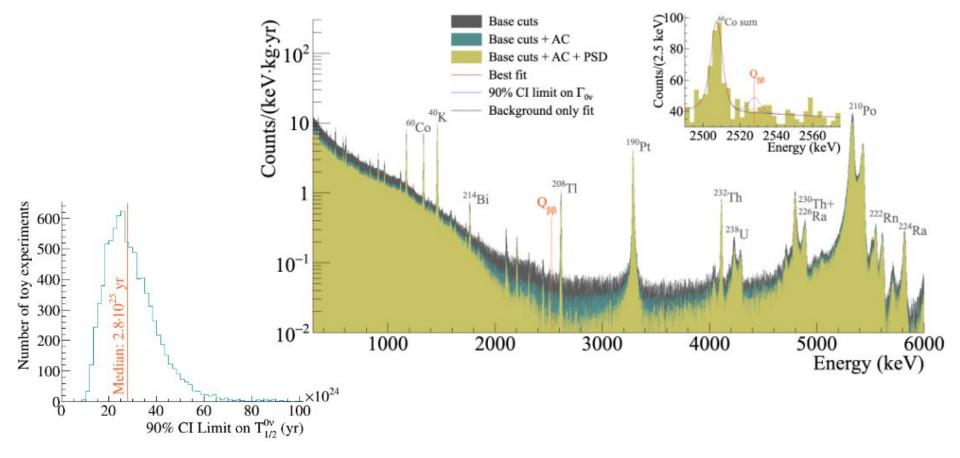
$$\circ$$
 Expectation count: $\lambda=s+c+b$

Background Index


- Predominantly degraded α interactions from copper structures and surface of crystals
 - Fit flat background in [2650, 3100] keV region
- Flat region in $Q_{\beta\beta}$ region
 - Fit flat background + 60 Co in [2490, 2575] keV region

Blinding Procedure

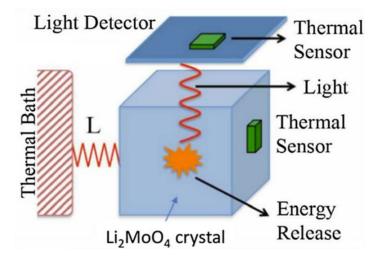
- Shift a fraction of events from ²⁰⁸Tl 2615 keV line to $Q_{\beta\beta}$ line and vise versa
- Keep original energies encrypted until unblinded
- Unblind once full analysis procedure is fixed



1st Tonne Year Results

- Results: Nature 604, 53-58 (2022))
- Median exclusion sensitivity: 2.8×10^{25} yr (90% C.I.)
- $T_{1/2} > 2.2 \times 10^{25} \text{ yr} (90\% \text{ C.I.})$

2nd TY Analysis Numbers


Parameter	Value
FWHM at 2615 keV (calibration data)	$7.43 \pm 0.37 \text{keV}$
FWHM at $Q_{\beta\beta}$ (physics data)	$7.26^{+0.43}_{-0.47}{ m keV}$
Total Analysis Efficiency	93.2%
Average Background Index at $Q_{\beta\beta}$	$1.3 \times 10^{-2} \text{ cts/keV/kg/yr}$

CUPID

- New Li₂MoO₄ towers to be installed after decommissioning of CUORE
 - Same cryostat used with upgraded pulse tubes
- Additional scintillating bolometer coupled to crystal
 - Light escapes crystal to induce a phonon signal in the Germanium wafer

