

Scattering and Neutrino Detector at the LHC

Lake Louise Winter Institute Chateau Lake Louise, Alberta, Canada

22 February 2024

Scattering and Neutrino Detector at the LHC

Neutrinos at the LHC

LHC neutrino experiments discussed since 80s/90s

Large neutrino flux in the forward region

Unexplored region of neutrino energy: [10² GeV, 10³ GeV]

 $\sigma_v \propto E_v$

SND@LHC designed to observe neutrinos of all flavour

|--|

IOP Publishing

Journal of Physics G: Nuclear and Particle Physics

J. Phys. G: Nucl. Part. Phys. 46 (2019) 115008 (19pp)

https://doi.org/10.1088/1361-6471/ab3f7c

Physics potential of an experiment using LHC neutrinos

OPEN ACCESS

IOP Publishing

Journal of Physics G: Nuclear and Particle Physics

J. Phys. G: Nucl. Part. Phys. 47 (2020) 125004 (18pp)

https://doi.org/10.1088/1361-6471/aba7ad

Further studies on the physics potential of an experiment using LHC neutrinos

SND@LHC experiment

Experiment location

- Rapidity range 7.2 < η < 8.4 complementary to FASERν experiment
- Re-using LEP transfer tunnel, TI18
- 480m from ATLAS interaction point, IP1

Experimental aims

- 1. Measure neutrinos of all three flavours
- 2. Probe charm production using v_e measurements (next slide)
- 3. Searching for feebly interacting particles (FIPs)

LHC run 3 physics programme: heavy flavour

90% (v_e + anti- v_e) at SND@LHC come from charmed hadron decays:

- 1. Measure pp $\rightarrow v_{p}X$ cross section
- 2. Use as a forward charm production probe
- 3. Constrain gluon PDFs at low Bjorken-x (< 10⁻⁶) (back-up). Inform high energy collider design, neutrino astrophysics

Correlation between pseudo-rapidity of the ($\rm v_{\rm e}^{+}anti-\rm v_{\rm e}^{})$ and the parent charmed hadron

Veto system

Goal: veto incident charged particles

2 planes of stacked plastic scintillators read out by silicon photomultipliers (SiPMs)

Neutrino target and vertex detector

Target tracker and electromagnetic calorimeter (ECAL)

Hadronic calorimeter and muon system

Planes of stacked plastic scintillators read out by SiPMs.

Interleaved with iron walls (green) ~8.5 λ

Higher granularity downstream stations used for muon tracking

Goals:

First 5 planes for hadronic energy measurement Last 4 planes for identifying outgoing muon

HADRONIC CALORIMETER AND MUON SYSTEM

Observation of collider muon neutrinos with the SND@LHC experiment

Using electronic detectors, high purity muon neutrino charged current (CC) deep inelastic scattering (DIS) interaction sample.

36.8 fb⁻¹ of 13 TeV LHC data (2022) Dominant background: neutral hadron production in rock Estimated 0.086 background events $8 v_{\mu}$ candidates observed with a 6.8 σ significance

Observation of collider muon neutrinos with the SND@LHC experiment

Muon flux measurement

- IP1 muons: dominant event source and background in v-searches:
 - a. No veto → generate showers via bremsstrahlung / muon DIS
 - Neutral hadrons production in material around SND
- Muon flux evaluated with Scifi tracker, muon system and an emulsion brick
 - a. First analysis of SND emulsion: agreement

with Scifi

<u>Albanese, R. et al. (SND@LHC collaboration)</u> <u>Measurement of the muon flux at the SND@LHC</u> <u>experiment. *Eur. Phys. J. C* 84, 90 (2024)</u>

Normalised muon flux in Scifi tracker as a function of height.

Gradient in height reproduced in data

Hadronic energy reconstruction

2023 CERN SPS testbeam, 100 - 300 GeV $\pi^{+/-}$

- Tag shower origin of the π interaction using SciFi planes
- Use SiPMs of target tracker planes + HCAL to reconstruct deposited energy
- 3. Perform calibration to be applied to TI18 detector

2024 plans

- Additional plane for veto system installed: reduced veto inefficiency → stronger neutrino signal observation significance
- Observation of charged current v_{e} DIS interactions
- v_{p} / neutral hadron separation with ML methods
- Emulsion track matching to target tracker timestamp emulsion data
- SND@LHC HL-LHC upgrade R&D (see backup for AdvSND outline)

Summary

TIIS

- SND@LHC probes all 3 flavours of neutrino at LHC energies complementary to Faserv
- v_{μ} observation published in PRL + muon flux published in EPJ-C
- 2023 π testbeams at CERN SPS for hadronic energy reconstruction

pp collision data in 2022 and 2023

Neutrino expectations in LHC run 3

- Simulations for 290 fb⁻¹
- Upward/downward crossing angle: 0.43/0.57
- Neutrino production in LHC pp collisions performed with **DPMJET3** embedded in FLUKA
- Particle propagation towards the detector through **FLUKA** model of LHC accelerator

Flavour	$ $ Neutrinos in $\langle E \rangle$ [GeV]	n acceptance Yield	$ $ CC neutrino $\langle E \rangle $ [GeV]	interactions Yield	NC neutrino $\langle E \rangle \ [GeV]$	interactions Yield
ν_{μ}	120	3.4×10^{12}	450	1028	480	310
$\bar{\nu}_{\mu}$	125	$3.0 imes 10^{12}$	480	419	480	157
ν_e	300	$4.0 imes 10^{11}$	760	292	720	88
$\bar{ u}_e$	230	$4.4 imes 10^{11}$	680	158	720	58
$\nu_{ au}$	400	$2.8 imes 10^{10}$	740	23	740	8
$ar{ u}_{ au}$	380	$3.1 imes 10^{10}$	740	11	740	5
TOT		7.3×10^{12}		1930		625

QCD measurements - gluon PDF at low x ($\leq 10^{-6}$)

LHC dominant partonic process for associated charm production at the LHC is gluon-gluon scattering

Extraction of gluon PDF in very small x-region: future circular colliders & neutrino astrophysics

Feebly interacting particles (FIPs)

Decaying in the detector : dark scalars, heavy neutral leptons or dark photons decaying into a pair of charged tracks.

Scattering in the detector. E.g., scalars interacting with nucleons via a leptophobic portal.

Data acquisition

- TOFPET2 ASIC front end board
- Low signal threshold: 0.5 p.e
- Intrinsic time resolution of 40 ps

- DAQ boards using Cyclone V FPGA
- Timing synchronous with LHC clock @ 160 MHz
- LHC timing, trigger and control system (TTC) handled via optical fibre
- Handle input from 4 TOFPET2 ASICs, 512 channels
- All electronic signals above threshold sent to DAQ server
- DAQ server runs timestamp based event builder
- Implements 2-stage noise filter
- Events saved to disk in root format

Emulsion logistics and processing

Emulsion replaced every < 20 fb⁻¹ keeps occupancy manageable

Replacement possible during LHC short accesses

5 microscopes around Europe and Russia working in parallel

Distributed data processing in progress

v_{μ} observation, simulation

FLUKA Monte Carlo: neutrino production in pp collisions

DPMJET3: pp event generation

FLUKA propagates the particles towards SND@LHC

<u>157 +/- 37 interactions expected</u>. Uncertainty given by difference between using DPMJET3 and SIBYLL to predict the v_{μ} flux at SND@LHC

v_{μ} observation, selection cuts

Fiducial volume cut: reduce background from side-entering neutral hadrons

First 2 SciFi planes are added as a veto to reduce the impact of muon induced backgrounds

Exposed scintillators of a DS plane

TABLE I. Number of events passing the selection cuts in the data and signal simulation.

	Data	Signal simulation
All	8.4×10^{9}	157
Fiducial volume	4.9×10^{5}	11.9
One muonlike track	17	6.1
Large SciFi activity	13	5.1
Large hadronic activity	12	4.7
Low muon system activity	8	4.2

Reduced fiducial area in *xy*

v_{μ} observation, background estimation

- Inefficiency of our charged particle veto dominated by deadspace between stacked scintillators.
- 1st + 2nd SciFi included in veto
- Jan 2024: installation of a third veto plane

Background yield after all cuts: 8.6 +/- 3.8 x10⁻², dominated by K_L^{0} s. 44% uncertainty from three sources:

- Difference in the muon flux between the simulated and measured muons, 22%
- 2. Hadron interaction model differences*, 31%
- 3. Available statistics in the simulations, 21%

*models are QGSP_BERT_HP_PEN and FTFP_BERT

SND@LHC beyond LHC run 3

