UNIVERSITY OF PERUGIA

 PHYSICS DEGREE COURSE
Pulse Shape Studies of Neutral Particles with a Liquid Scintillator

Presented by:
Lucia Salvi
beamide

October 27, 2022

HADRONTHERAPY

Hadrontherapy: peak of the dose at the end of the path

Radiotherapy: large dose both in the entrance channel and beyond the treatment volume but...

Radiotherapy I-I5 MeV/u

Hadrontherapy 150-400

MeV/u

HADRONTHERAPY

Hadrontherapy: peak of the dose at the end of the path

Radiotherapy: large dose both in the entrance channel and beyond the treatment volume but...

Projectile-fragment
Projectile

Target
Target-fragment

Abrasion

Ablation

Hadrontherapy 150-400
MeV/u

Projectile fragmentation:

- secondary particles with lower Z w.r.t. projectile
- longer range
- energy loss tail beyond Bragg Peak

Radiotherapy I-I5 MeV/u

Target

fragmentation:

- low energy charged fragments
- short range
- impact in the entrance channel

RADIATION PROTECTION IN SPACE

Galactic cosmic rays

Galactic cosmic rays
Supernova constanty
3

Solar particle events

FOOT EXPERIMENT

Aims:

- Target fragments $d \sigma / d E_{\text {kin }}$ precision 10%
- Projectile fragments $d^{2} \sigma / d E_{k i n} d \theta$ precision 5%

Target: C and $\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{\mathrm{n}}$, I and 0.5 cm thick
Detector: liquid scintillator BC-50IA, diameter and length 7.62 cm

Veto: plastic scintillators, $9 \times 9 \times 0.5 \mathrm{~cm}^{3}$

NEUTRON DETECTORS

Data collected: GSI laboratory, Darmstadt, Germany, July 2021
Analyzed data: 346589 I $^{16} \mathrm{O}, 400 \mathrm{MeV} / \mathrm{u},\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{\mathrm{n}}$, I cm

Neutral particles: anticoincidence event
Number of events: 2662
Charged particles: coincidence event
Number of events: 466

BC-501A: neutron detection based on neutron - proton elastic scattering

$$
E_{p}=E_{n} \cos ^{2} \theta
$$

TIME OF FLIGHT CALIBRATION

BC-50IA scintillator

$$
\begin{aligned}
& \mathrm{TOF}_{\mathrm{Y}}=\frac{\mathrm{L}}{\mathrm{c}} \sim 7.9 \mathrm{~ns} \\
& \mathrm{TOF}=\mathrm{T}_{\mathrm{sc}}-\mathrm{T}_{\text {det }}
\end{aligned}
$$

TIME OF FLIGHT CALIBRATION

BC-50IA scintillator
Gaussian fit to the prompt gamma peak

PROMPT GAMMA DISCRIMINATION

BC-50IA detector

Time of flight distribution

TOF NEUTRONS $>\mu+2 \sigma \sim 9.8 \mathrm{~ns}$

PULSE SHAPE DISCRIMINATION

Analysis of the pulse shape

- Gammas: fast signal, exponential decay with $\mathrm{T}_{\text {fast }} \sim 3.16 \mathrm{~ns}$
- Neutrons: signal with longer tail; slow component, decay described by two exponential dustributions with $\mathrm{T}_{\text {fast }} \sim \mathbf{3 . 1 6} \mathrm{ns}$ and $\mathrm{T}_{\text {slow }} \sim \mathbf{3 2 . 3} \mathrm{ns}$

Separation of the fast and slow component

PULSE SHAPE DISCRIMINATION

PULSE SHAPE DISCRIMINATION

NEUTRONS AND GAMMAS DISCRIMINATION

BC-50IA detector

NEUTRONS AND GAMMAS DISCRIMINATION

BC-50IA detector

Neutrons identified with the conditions:

- Amplitude > 0.02 V
- TOF $>\mu_{\text {gamma peak }}+2 \sigma_{\text {gamma peak }}$
- Area slow/Area tot >0.245

KINETIC ENERGY DISTRIBUTION

BC-50IA detector

KINETIC ENERGY DISTRIBUTION

BC-50IA detector

Preliminary cross section @ 24°

EFFICIENCY PARAMETRIZATION

BC-50IA detector

$$
\varepsilon(E)=\frac{a}{\sqrt{E}}+\frac{b}{E}+\frac{c}{\sqrt{E^{3}}}+\frac{d}{E^{2}}+e
$$

PRELIMINARY CROSS SECTION MEASUREMENT

${ }^{16} \mathrm{O}, 400 \mathrm{MeV} / \mathrm{u},\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{\mathrm{n}}$, I cm

Uncertainties due to only statistic fluctuations

CONCLUSIONS

- From this feasibility study, the most important points have been shown: neutrons-gammas discrimination
preliminary cross section measurement

MRADSIM: MATTER RADIATION SIMULATION

A software with a graphic interface, user friendly, in order to simulate the radiation effects on electronic and electromechanical devices.

- Conversion tool: from a step file (CAD output) to a GDML (simulation input);
- Simulation tool: based on Geant4;
- Graphic interface: modern and intuitive, allows the user to visualize the geometry of the project, set the parameters of the simulation and display the results obtained

MRADSIM: MATTER RADIATION SIMULATION

Applications:

- Aerospace industry;
- Medical centers for radiotherapy;
- Research centers and particle accelerators;
- Sustainable energy plants;
- Study of biological samples (DNA) exposed to radiation;
- Other areas characterized by a massive use of electronics to predict and correct possible errors caused by external radiation

HARDEST: HANe HaRDENing for Satellite sysTems

Global alliances are preparing for the defence of Space, i.e. the protection of satellite assets and their components to harden them against the effects caused by High Altitude Nuclear Explosion (HANE).

Several tests carried out in the 50 s and 60 s:
STARFISH Prime, 1962

914-kiloton thermonuclear air burst, May 22, 1970 nuclear test

ThalesAlenía
 a Thales / Leonardo company Space

Relevant disturbances in the communications of several satellites and complete loss of 7 satellites within a few month of the explosion

HARDEST: HANE HARDENING FOR SATELLITE SYSTEMS

Under study:

- Thermonuclear detonations in altitude (to date explosions between 50 km and 540 km high);
- Effects on electronic/electromechanical parts and ground effects;
- Natural sources in space (trapped electrons and protons, solar protons, GCR and X - rays) and sources from HANE (X - rays, gamma and ions);
- Generation of electromagnetic pulse, repopulation of Van Allen belts, ionization interacting with $\mathrm{N}_{2} / \mathrm{O}_{2}$ in high atmosphere, surrounding materials.
In planning phase:
- Development of nuclear explosion models with Geant4;
- Back-tracing of electrons and protons to follow them in Van Allen belts to calculate the repopulation;
- Propagation to satellites and transport with MRADSIM through the satellite with electronic/electromechanical components on board and analyze the output;
- Evaluate component criticality, active and passive mitigation techniques, model test
 and mitigation development with particle beams.

THANKS FOR YOUR ATTENTION

BACKUP

NEUTRONS AND GAMMAS DISCRIMINATION

$\mathrm{BC}-50 \mathrm{IA}$ detector

NEUTRONS AND GAMMAS DISCRIMINATION

Area slow/Area tot $\mathbf{>} 0.220$

Number of neutrons and delayed gammas 784

Number of neutrons 333

NEUTRONS AND GAMMAS DISCRIMINATION

Area slow/Area tot $\mathbf{>} 0.260$

Number of neutrons and delayed gammas 784

Number of neutrons 265

NEUTRONS AND GAMMAS DISCRIMINATION

Area slow/Area tot >0.220
Area slow/Area tot $\mathbf{>} 0.260$
Semidispersion ~ 5\%

