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G-quadruplexes

● G-quadruplexes (G4) are nucleic acid non-canonical 
higher order secondary structures;

● They are found in G-rich sequences of the genome, 
such as telomeres and gene promoter regions;

● G4 can take different topologies depending on a 
large variety of conditions ;

● Structural polymorphism of G4 is linked to their 
transient nature;

● G4 structures’ stabilization in telomeric sequences 
leads to telomerase inhibition; in gene promoter 
regions it can be used to regulate gene expression;

● Understanding G4-ligand interaction mechanism is 
essential in the rational design of anticancer drugs 
having G4 as target.

● Even though investigation of G4 structure and 
function has been extensively performed, this is the 
first work ever done on G4 fast dynamics!
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Sequence and Drugs

BRACO19

Berberine

● Sequence: AG
3
(TTAG

3
)

3

● Drugs:
● BRACO19: a trisubstituted acridine G4-interacting 

compound that appears to inhibit telomerase activity; 
higher affinity with Quadruplex DNA than duplex 
DNA

● Berberine: a quaternary ammonium salt from the 
protoberberine group of benzylisoquinoline alkaloids  
with anticancer activity
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Neutron Scattering experiments 
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1

2 π N
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● Incoherent neutron scattering experiments allow determination of dynamical properties of the 
system under study;

● Large incoherent neutron cross section for hydrogen atoms is suitable for biomolecules;
● Thermal neutrons  wavelength and energy match both typical intermolecular lengths and thermal 

excitation energies;
● Average correlation of the same hydrogen atom at different times yields the scattering function:

● Two techniques have been deployed: 
• Elastic Incoherent Neutron Scattering 

(EINS);
• Quasi-elastic Incoherent Neutron 

Scattering (QENS);
● Spectrometers with different resolution 

allow to “tune” onto motions taking 
place at different timescales.
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Are we measuring G-quadruplexes?

● Spectroscopic methods (e.g. CD) are 
available to probe formation and 
structure of biomolecules, in solution;

● Neutron measurements are made on 
hydrated powders!

● How can we be sure that we are not just 
measuring a “structureless” nucleic acid 
sequence?

ATR-FTIR!!!

● ATR-FTIR is a spectroscopic technique 
useful to investigate molecular vibrations;

● It can be used to analyze powders!
N7C8H
1480cm-1

Quadruplex 
formation[1]!!!
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Are we measuring G-quadruplexes?

N7-N2H
Quadruplex 
formation[1]!!!

● Another evidence of G4 formation is the  
presence of a peak at 1537cm-1 consistent 
with the presence of the N7-N2H hydrogen 
bond (Hoogsteen base pairing)

[1]: Guzmán, M. Romero, et al. "Characterization of parallel and antiparallel G-tetraplex structures by vibrational spectroscopy." Spectrochimica Acta 
Part A: Molecular and Biomolecular Spectroscopy 64.2 (2006): 495-503.
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EINS model
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3 )

● The elastic intensity can be written as:

● In the limit Q→0 (Gaussian approx.):

● But to fit in the high Q-range we need a 
cumulant expansion introducing a 
quartic term to account for dynamical 
heterogeneity:

S (Q ,ω=0)=exp (−Q
2 ⟨u2⟩

3 )
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EINS results (IN16b)
● The MSF are greater in the presence of the 

drugs: complexation leads to enhanced 
overall mobility;

● Dynamical transition at ~ 235K in Tel22, at  
~ 220K in the presence of drugs; 

● The slope of the MSF as a function of T 
quantifies thermal softness of the protein 
(random walk in confining harmonic 
potential):

● Lindeman Criterion can be use to estimate 
unfolding forces:

● Results are of the same order of magnitude 
of those from SM experiments.

⟨u2
⟩=

3 kBT

k f

√⟨u2
⟩unf=0.17 Lt Fu=k f √⟨u2

⟩unf

IN16b Energy resolution: ~ 0.75 μeV
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QENS model
● Resolution function as fitted from Vanadium standard;
● Two dynamical components, a slow (S) and a fast (F) 

one;
● Theoretical model: energy surface consisting of two 

double wells, one embedded in the other;
● Jumps from well 1 to well 2 represents S dynamics, 

jumps within well 2 (between sub-wells 3 and 4) 
represents F dynamics.

● The fitting function is:

S (Q ,ω)=A (Q) g(ω)+B (Q)V 1(ω ,Γ1)+C (Q)V 2(ω ,Γ2)

C (Q)=
f
2

sin(Q d2)
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sin(Qd 1)
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A(Q)=1−B (Q)−C (Q)
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QENS results (IN16b)
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QENS results (IN16b)
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QENS results (IN16b)

● Γ
2
 has been found to be constant as a function 

of both Q and T, with the same value of 20μeV 
for all the samples; 

● d
2
 also appears to be almost unaffected by 

complexation;
● d

1
 is increased upon complexation;

● Γ
1
 (as a function of temperature) show that 

complexation prompts faster motions in the 
system; it can be written as:

Γ1=
k BT
h

e
−ΔG 0

kBT
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QENS results (IN16b)
● The population of the second well is increased upon 

complexation;
● We have:

● The decrease in free-energy difference upon 
complexation is entropy-driven. The extracted values 
are reported below:

p ' 2
p ' 1

=exp( ΔG
kBT )=exp (Δ Sk B −

ΔH
kBT )
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IN16b results in brief

● Complexation with selected drugs results in the enhancement of the dynamics of Tel22;
● Stabilization was expected to result from complexation, but:

● hydrated powder samples were measured (only internal dynamics);
● Specific timescale (ns and sub-ns at IN16b) was investigated;
● D

2
O hydrate powders (hydration water is not visible).

● The system is dynamically heterogeneous;
● Two dynamical regimes have been found of slow high amplitude motions and fast low amplitude motions; 
● Enhanced dynamics is prompted by:

● Increased number of scatterers participating to 
quasielastic motions originating from decreased free 
energy differences between the wells bottom in the 
potential energy;

● Faster transition between the wells in the potential energy 
due to slightly slower energy barriers.

● The enhancement of the dynamics of Tel22 upon 
complexation results to be entropy-driven.

● The hydration of the three samples was the same: reasonable 
to suppose that complexation leads to a different hydration 
water coordination;

● Changes in hydration water network may reflect into 
different mobility observed in neutron scattering experiments. 

● The role of hydration water needs to be further clarified.
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Influence of ions and complexation in 
G4 fast dynamics (IN13)

● Measurements of Tel22 stabilized 
with K+ and with Na+, both alone 
and in the presence of BRACO19;

● Only EINS temperature scans were 
carried out, from 20K to 300K;

● Interestingly enough, the sample 
shows dynamical homogeneity;

● This allows us to obtain MSF using 
the Gaussian approximation:

● We observe greater MSF in Tel22-
K+ than Tel22-Na+;

● Again, enhanced mobility in the 
presence of the ligand is visible;

● The two effects (ion difference and 
complexation) seem to act 
independently on the MSF.

S (Q ,ω=0)=exp (−Q
2 ⟨u2⟩

3 )

IN13 Energy resolution: 8 μeV
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IN13 results
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Dynamical differences: just hydration 
water or different secondary structure?
● Different ions exert different coordination degree 

of water molecules, with sodium possibly 
facilitating formation of water networks;

● Ion position among stacked tetrads is different; 
more ions exposed to water may change the 
number of water molecules coordinated by the 
biomolecule; 

● But...different ions can induce different G-
quadruplex conformations, which may also 
contribute to their dynamics…

● Furthermore, different conformations can involve 
different water structures (e.g. water spines), with 
different mobility.

● Complexation may also induce a change in G-
quadruplex structure…

● G4 structure is known to be antiparallel in Na+ 
and mostly parallel in K+[3] in solution...what 
about powders?

[3] Ambrus, Attila, et al. "Human telomeric sequence forms a hybrid-type intramolecular G-quadruplex structure with mixed parallel/antiparallel 
strands in potassium solution." Nucleic acids research 34.9 (2006): 2723-2735.

[2] Lim, Kah Wai, et al. "Structure of the human telomere in Na+ solution: an antiparallel (2+ 2) G-quadruplex scaffold reveals additional diversity." Nucleic 
acids research 41.22 (2013): 10556-10562.
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FTIR for structure determination

● We now understand that, in order to understand 
dynamics we need to understand hydration 
water interaction and structure;

● Again, FTIR can be the answer, but the task is 
more complicated than formation detection…

● Two major problems:
● Hydration level control;
● WATER!

● If we expect the ligand to induce differences in 
water network, we must be sure that hydration is 
the same.

● We can try to estimate the hydration level by 
monitoring the OH stretching band (in the 
powder state);

● Gravimetric measurements might be useful for 
calibration! hg(t )=m0(1−e

−t
τg )

hs(t)=I 0(1−e
−t
τ s )
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FTIR spectra: solution

1682cm-1: AP strand[1]

BUT, even though we expect Na+ to favour AP conformation in solution, K+ should 
induce a mixture of populations. Besides, OH bending is present in the region!

[1]: Guzmán, M. Romero, et al. "Characterization of parallel and antiparallel G-tetraplex structures by vibrational spectroscopy." Spectrochimica Acta 
Part A: Molecular and Biomolecular Spectroscopy 64.2 (2006): 495-503.
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FTIR spectra: powder state (D2O)

Hydration control (hopefully!)

Using D
2
O moves water 

bands at lower frequencies. 
However, we see the same 
peaks at 1682cm-1. But during 
the measurements there is 
D

2
O-H

2
O exchange. 
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FTIR spectra: powder state (H2O)

Hydration control (hopefully!)

Measurements at lowest 
hydration (H

2
O). The peak 

at 1682cm-1 is still present. 
Is it possible that at 
extremely high 
concentration only AP 
conformation is favoured?
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Next steps

● Clarify the issues with structure 
determination;

● It is possible to DRIFT to measure 
completely dehydrated samples OR…

● Use Raman spectroscopy[4]!

● Investigate aggregation, either via IR (a 
marker needs to be found) or SAXS;

● Perform simulations in order to interpret 
SAXS results about aggregation.

● Use a different sequence with available PDB 
structure and more stable conformation to 
investigate dynamics.

[4] Palacký, Jan, et al. "Does Raman spectroscopy recognize different G‐quadruplex arrangements?." Journal of Raman Spectroscopy 51.2 (2020): 301-
312.
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II year activities and upcoming

● Corso avanzato di Python per uso scientifico (27-
29 october 2021, INFN Perugia);

● Serie di Webinar sulla progettazione  in Horizon 
Europe- Gestione in Horizon 2020:
● Lump Sum Funding in Horizon Europe: How 

does it work? How to write a proposal? (19 May 
2022);

● Info session on Horizon Results Booster – 
steering research towards a strong societal 
impact (25 May 2022);

● Horizon Europe Coordinators’ Day on Grant 
Agreement Preparation (15 June 2022).

● G4thering conference (27 june- 1 july 2022) in 
Mariánské Lázně (CZ):
● Poster Session (Role of fast dynamics in the 

complexation of G-quadruplexes with small 
molecules);
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II year activities and upcoming

● Seminar “Brillouin Scattering as a probe for 
mechanical and morphological 
characterization of materials (19 May 2022, 
IOM-CNR, Perugia)

● “Biofotonica” course (Oct-Dec 2022, 
Dipartimento di Fisica e Geologia, 
Perugia);

● Paper: “Role of fast dynamics in the 
complexation of G-quadruplexes with small 
molecules” (Revison submitted);

● Paper: “The effect of ions and complexation 
with small molecules on G-quadruplex fast 
dynamics”; (in preparation, estimated 
submission on 15 December);

● UPCOMING: European Conference on 
Neutron Scattering (20-23 Marzo 2023) 
with (hopefully) a talk about the PCCP 
article results.



Thank you for the attention!
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