2nd year PhD report

Stefano Moneta

SKEK

Tutor: Claudia Cecchi

Istituto Nazionale di Fisicia

Recap of 2022 activities

Mostly work on "research side"

- Electroweak penguins *B*-decays at Belle II
 - $B \rightarrow K^{*0} \tau \tau$ with hadronic tag (main analyst, <u>PhD thesis</u>)
 - Contribution to $B^+ \to K^+ \nu \nu$ with hadronic tag (PG group)

- Hardware and calorimetry
 - Detector maintenance and repair (during shut-down) + shift turns (during data-taking)
 - R&D work for possible **calorimeter upgrade**
- Others
 - XXXIII International School of Nuclear and Subnuclear Physics "Francesco Romano" (June, 2022, Otranto)
 - Teaching activity at Dipartimento di Matematica (Fisica 2)

Physics analysis status

Target flavor anomalies

Global tension in semileptonic and $b \rightarrow sll$ decays

- Belle II can play a major role to study **anomalies** in *B***-decays**
- *B*-decays with missing energy expected to be complementary to observed anomalies

$$\circ \qquad B \longrightarrow K^* \tau \tau , \ B^+ \longrightarrow \mathsf{K}^+ \nu \nu$$

BB reconstruction techniques

Measurements of **inclusive** *B*-decays or with **neutrinos** need knowledge of **initial kinematics**

- \Rightarrow Information from partner B_{tag} provides insight about signal B_{sig}
 - Different possible algorithms to reconstruct
 *B*_{tag} candidates
 - Methods specific to *B*-factory experiments

Search for $B \rightarrow K^* \tau \tau$ decay

• FCNC decay involving **3rd generation** leptons

- In SM: BR($B \rightarrow K^* \tau \tau$) ~10⁻⁷
- Enhanced by NP models coupling only to 3rd generation or with coupling proportional to particle mass

- **Belle** (preliminary) [<u>arXiv</u>] (*)
 - Observed BR($B^0 \to K^{*0} \tau \tau$) < 2.0 × 10⁻³ @90% CL
 - 711 fb⁻¹
 - Hadronic tag (<u>NeuroBayes</u> algorithm)
 - Both τ decay 1-prong (e, μ or π)

B. Capdevila, A. Crivellin, S. Descotes-Genon, L. Hofer, et J. Matias, *arXiv:1712.01919, PRL 120, 181802*

Analysis overview

Study **neutral channel** $B^0 \rightarrow K^{*0} \tau \tau$

- B-tag with <u>hadronic Full Event Interpretation</u> (FEI)
- Reconstruct $K^{*0} \rightarrow K\pi$
- Reconstruct all $\tau \rightarrow 1$ -prong combinations
 - \circ $\tau \rightarrow |\nu\nu, \tau \rightarrow \pi\nu$ (same as Belle)
 - \circ $\tau \rightarrow \rho \nu$ (<u>new</u> w.r.t. Belle)
- No extra tracks in the rest of event

Samples

MonteCarlo (MC)

- 50M signal $B^0 \rightarrow K^{*0} \tau \tau$
- 1 ab⁻¹ generic background
 - BB (neutral + charged)
 - continuum (u,d,s,c)

Data

- Full pre-LS1 (2022) data sample
 - 362 fb⁻¹ at Y(4S)
 - 42 fb⁻¹ off-resonance

Event preselection

- M_{bc} > 5.27 GeV
- B_{tag} flavor opposite to K*⁰ (from K[±] sign)

After preselection :

- $\epsilon_{sgn} = 2.74 \times 10^{-3}$
- Reject 75% of background

Background validation

- Y(4S) sideband to validate peaking background:
 - \circ **sideband** region \rightarrow wrong flavor reconstructed events
 - Correct qq background comparing MC with off-resonance data
 - For *BB* background, apply **corrections** to account for different MC/data **FEI efficiency**
- Data/MC = 0.954 ± 0.010 (*)
 - Residual ~5%
 - Need to include charged PID and neutral clusters efficiency corrections

Signal selection

Train XGBoost **BDT** to discriminate signal against all backgrounds

- Exploit ~30 variables (kinematics, event-shape, vertices, ...)
- Distinguish *ττ* decay topologies during the training
- Dominant backgrounds are *BB* and ccbar

Upper limit (projections)

Extract upper-limit, assuming different systematics scenarios

	Bkg systematics	$\epsilon_{sgn} \times 10^{-5}$	Bkg yields (/100 fb ⁻¹)	Expected UL BR(B ⁰ →K ^{*0} ττ)
Belle (cut-based)	5%	1.24	21.4	3.0 x 10⁻³ @711 fb⁻¹
Belle II (BDT>0.94)	5%	13.6	87.5	1.1 x 10⁻³ @360 fb⁻¹
Belle II (BDT>0.96)	10%	7.26	31.2	1.3 x10⁻³ @360 fb⁻¹
Belle II (BDT>0.98)	30%	2.23	5.1	1.7 x10⁻³ @360 fb⁻¹

- Optimize BDT cut to cope with higher background uncertainties
- Final strategy is to **fit BDT output** in a wider signal region

Comparison with Belle

The improvement in the expected upper limit w.r.t. Belle, comes from various sources:

- Hadronic **B-tag efficiency** (FEI)
 - ~0.5% vs ~0.2% @Belle
- **BDT** signal selection, instead of cut & count
 - $\circ~$ Factor x2 in $\epsilon_{sgn}^{}/b^{1/2}$ according to Belle II simulation study
- $\tau \rightarrow \rho v$ additional decay mode considered
- Better **ECL extra energy** signal/background shape separation

Next analysis steps

- Finalize validation of backgrounds
- Perform **signal validation** on "embedded" control channel
 - \circ reconstruct B \rightarrow K* J/ ψ on data, substitute J/ ψ with simulated τ -pair
- Upper limit extraction
 - Binned fit in a signal region of BDT output (using pyhf)
 - Optimize BDT cut with Punzi FOM

Some missing steps will be completed in synergy with K_{vv} analysis \rightarrow see next slides

Search for $B^+ \rightarrow K^+ \nu \nu$ decay

- Analysis unique at *B*-factories
 - Test SM, complementary to $b \rightarrow sll$ anomalies
 - Reliable prediction (no amplitudes with virtual photon)
- Upper limit set by Belle II in 2021 (PRL)
 - Exploit a new **inclusive tag** method
 - Use only 63 fb⁻¹ of statistics
 - Expect world-leading result with 2022 data sample
- Combined inclusive+hadronic tag analysis for the 2022 data sample (362 fb⁻¹)
 - Use hadronic tag analysis (robust method) as cross check for the inclusive one
 - Perugia group involved in this effort

$B^+ \rightarrow K^+ \nu \nu$ with hadronic tag: overview

- Reconstruct *B*_{tag} with **hadronic FEI**
- Select K^+ and require no extra tracks/ π^0
- Train **XGBoost** to separate signal from background
- Fit of BDT output signal region
 - Two components (sgn and bkg) in 12 bins
- Set upper limit
 - Projection with 400 fb⁻¹ (including all systematics)
 - **Expected**: BR(B+ \rightarrow K+ $\nu\nu$) < 1.5 × 10⁻⁵ @90% C.L.

Hardware and laboratory

Belle II detector

Data-taking stopped for intermediate detector work (**LS1**)

- <u>Upgrade</u>
 - <u>VXD completion</u>
 - new beam pipe
- <u>Maintenance</u> of other sub-detectors
 - PMTs replacement
 - Repair modules
- Will <u>resume</u> running <u>by 2023</u>

Belle II Electromagnetic CaLorimeter (ECL)

- In 2019–2022 data taking period \rightarrow reached luminosity 5 x 10³⁴ cm⁻²s⁻¹
- Target luminosity will be x6 higher
- High level of electromagnetic background → ECL stressed
 - Need to replace some damaged modules
 - Substitute readout system for deal with higher event rate (COPPER \rightarrow PCIe40)
 - Other minor interventions
 - Open ECL endcaps to access VXD

Explore possible calorimeter upgrades

Beam-background can become problematic (particularly in endcaps)

⇒ Faster crystals: pure CsI instead of Tallium-doped CsI

	ρ ,	$X_0,$	λ_{em} ,	$n(\lambda_{em})$	$N_{ph}/{ m MeV}$	$ au_d,$	dL/dT,
	g/cm^3	cm	nm		54 102	ns	$\%/^{\circ} 20^{\circ}C$
pCsI	4.51	1.85	305	2.0	2000	20/1000	- 1.3
CsI(Tl)	4.51	1.85	550	1.8	52000	1000	0.4

- ~10 times lower light output \rightarrow need photosensors with internal gain
- Explored two main alternatives:
 - \circ APD \rightarrow readout with preamplifier + shaper, similar to present Belle II electronics
 - $\circ \quad \mathsf{SIPM} \to \mathsf{no} \; \mathsf{need} \; \mathsf{of} \; \mathsf{signal} \; \mathsf{shaping}$

Thank you!

