

Annual report second year of PhD course

Matteo Magherini

Tutor: Alessandro Rossi

Overview

- CMS outer tracker upgrade for high luminosity
 - Anatomy of tracker modules for upgrade
 - DAQ for CMS HiLumi modules
- MUonE experiment test and deployment
 - Physics case
 - Measure
 - Detector
 - Data Acquisition
 - Test beam results

CMS outer tracker upgrade for high luminosity

- Hi-Lumi upgrade of LHC after LS3 (~2026)
 - Peak Luminosity ~7.5x10³⁴cm⁻²s⁻¹
 - Expected Pile-up ~200
 - Higher rates and radiation dose wrt Run3
 - New Magnets (11T)
 - Etc..
- Necessary upgrade of current tracker:
 - leakage current or full depletion voltage limitations → big part of current tracker will be inoperational
 - Higher radiation level → upgraded tracker target: integrated luminosity of 3000 fb⁻¹
 - Efficient tracking + Higher pileup → Increase of granularity needed
 - Contribution to **level-1 trigger** → selection of interesting physics at the first trigger stage is extremely challenging at high luminosity

 HL-LHC → higher collision rate → Most of charged particles have low p_T → p_T selection at readout level in order to reduce the L1 tracking input data size

pT modules

- Two silicon sensors with small spacing in a module
- Flex hybrid in order to get data from both sensors to one ASIC → Select track «stubs»
- Different sensor spacing for different detector region
- Tunable correlation windows

- PS Modules
 - 3 different spacing : 1.6mm & 2.6mm & 4mm
 - One strip sensor: 2.5cm x 100µm strips
 - One macro Pixel sensor : 1.5mm x 100µm pixels
 - Sensor dimension 5cm x 10 cm
 - two column of 960 strips
 - 32x960 pixels

- 2S Modules
 - 2 different spacing : 1.8mm & 4mm
 - 2 micro strip sensors with 5cm x 90μm strips
 - Sensor dimension are 10cm x 10cm
 - two column of 1016 strips

- PS Modules
 - 3 different spacing : 1.6mm & 2.6mm & 4mm
 - One strip sensor: 2.5cm x 100µm strips
 - One macro Pixel sensor : 1.5mm x 100µm pixels
 - Sensor dimension 5cm x 10 cm
 - two column of 960 strips
 - 32x960 pixels

- 2S Modules
 - 2 different spacing : 1.8mm & 4mm
 - 2 micro strip sensors with 5cm x 90μm strips
 - Sensor dimension are 10cm x 10cm
 - two column of 1016 strips

DAQ for CMS modules

- **Stubs**: average position of the seed cluster + average position of the correlation cluster
 - L1 trigger
 - 40 MHz readout

- **Hits**: information on ALL the strips/pixel in a module (one bit per strip/pixel)
 - Final DAQ
 - 750 kHz readout

Involvement for DAQ chain

- Passage from test system (uDTC) to final readout system (DTC)
 - From readout via optical + IPBus + computation in resident CPU → optical + computation in FPGAs in the board
 - Transition of the calibration software for 2S modules → calibration SW for PS has just been deployed on the test system, time to transition also that!

MUonE

MUonE Physics case - Introduction

- Anomalous magnetic moment of a lepton as precison test for SM
 - Can be (very) precisely calculated in SM framework
 - But... it's flavor dependent!

$$\vec{\mu} = g_{\mu} \frac{e\hbar}{2m_{\mu}c} \vec{s}$$

$$a_{\mu} = \frac{g_{\mu} - 2}{2}$$

- Electron
 - g_e-2 determined with high precision
 - Sensitivity to new particles limited by a $\sim (m/M)^2$ factor

- Muon
 - Sensitivity to an higher mass region [GeV, TeV]
 - State of art: 4σ discrepancy from SM prediction

State of the art

FNAL g-2 Run1 results:

 $a_{\mu}^{\text{EXP}} = (116592089 \pm 63) \times 10^{-11} [0.54ppm] \text{ BNL E821}$ $a_{\mu}^{\text{EXP}} = (116592040 \pm 54) \times 10^{-11} [0.46ppm] \text{ FNAL E989 Run 1}$ $a_{\mu}^{\text{EXP}} = (116592061 \pm 41) \times 10^{-11} [0.35ppm] \text{ WA}$

Present theoretical uncertainties

 $a_{\mu} = a_{\mu}^{QED} + a_{\mu}^{EW} + a_{\mu}^{HAD}$

a_{μ}^{HLO} : LO Hadronic contribution

- Traditionally computed via a dispersion integral using hadronic production cross sections in electron-positron annihilation at low energies
- QCD lactice calculation still not competitive
 - ...at least up to the FNAL g-2 results...

Borsanyi, S., Fodor, Z., Guenther, J.N. et al. Leading hadronic contribution to the muon magnetic moment from lattice QCD - Nature 593, 51–55 (2021)

Measuring a_{μ}^{HLO} – how to

- MUonE: high precision measurement of a_{μ}^{HLO}
 - 160 GeV μ beam on e⁻ target at CERN
- Hadronic contribution to the effective electromagnetic coupling, $\Delta \alpha_{had}(q^2)$ for spacelike squared four-momentum transfers $q^2 = t < 0$, via scattering data

$$a_{\mu}^{HLO} = \frac{\alpha}{\pi} \int_0^1 (1-x) \Delta \alpha_{had}(t(x)) dx$$
$$t(x) = \frac{x^2 m_{\mu}^2}{x-1} \quad (0 \le -t \le +\infty)$$

t : momentum trasfered in the reaction

Measuring a_{μ}^{HLO} how to

• Experimental kinematic limit:

0 < -t < 0.161 GeV

or 0< x <0.93

• ~87% of the area \rightarrow extrapolated to 100% with functional model of $\Delta \alpha_{had}$ (t)

Measuring a_{μ}^{HLO} – key element

- Measure of the scattering angles precise tracking and at high rate
- Best solution: 2S modules from CMS

MUonE Detector

MUonE DAQ chain

MUonE DAQ chain

Data Structure from the 10 GB link

- On the sink PC 1.2 GB raw files are saved
- Raw files structure:
- Decoding of raw data \rightarrow different readable formats for analysers

MUonE – 2022 test beam setup

- *First time*: 6 modules readout at high intensity
- One completely equipped station + target
 → first possibility to reconstruct tracks and study MUonE capabilities and resolution
- Stress test for DAQ final system → 20 MHz muon beam ~ half of the expected rate in CMS for HiLumi

Data Quality Monitoring

DQM for MUonE - a dash + plotly application

• Deployment of DQM tools:

- Fast
- Interactive
- Keeping track of both firmware errors and hardware conditions
- With an eye on scalability for the future
- In progress: adding fast reconstruction of tracks

Realtimedon

Offline analysis

- Firsts results from tracking of this year TB ended yesterday
- First simple tracking with just a single particle passing through the detector → estimate of residuals
- Results around what expected ~ 100 um resolution → preliminar! Alignment still to be done

Offline analysis

- Firsts results from tracking of this year TB ended yesterday
- First simple tracking with just a single particle passing through the detector → estimate of residuals
- Results around what expected ~ 100 um resolution → preliminar! Alignment still to be done
- First track reconstruction in 2D performed

Offline analysis

- Firsts results from tracking of this year TB ended yesterday
- First simple tracking with just a single particle passing through the detector → estimate of residuals
- Results around what expected ~ 100 um resolution → preliminar! Alignment still to be done
- First track reconstruction in 2D performed
- You can recognize budget material

Plans for the next year

- Continuous work on passage from test DAQ system → final DAQ system.
 First step: transition of the whole calibration code for PS modules
- Analysis on test beam dataset:
 - Alignment of the modules never done still with stubs data stream
 - Studies on track reconstruction algorithms
 - Estimate of MUonE capability, resolution and extrapolation to sensitivity of the whole experiment
 - Characterization of CMS 2S modules
 - Characterization of failures in high intensity for DAQ firmware

Backup

Educational activities

- INFN School of Statistics 2022 [1]
- Standard Model at the LHC 2022 [2]

DAQ for CMS modules

Key element

• The key elemet to achieve the precision required is the measure of the scattering angles

- Experimental needs:
 - PID to separate electron and muon \rightarrow ECAL + μ -filter
 - Precise tracking for angles \rightarrow Tracker
 - Electron energy measurement to add redoundancy and reduce systematics→ECAL

DAQPath inclusion and testing

Figure 1: The hadronic contributions to $(g-2)_{\mu}$ dominating the theory uncertainty budget. Left: the hadronic vacuum polarisation contribution. Right: the hadronic light-by-light scattering contribution. A solid line represents the muon propagator, the wavy lines represent photon propagators. The external magnetic field is represented by a photon line coming in from the top.

https://arxiv.org/pdf/1911.08123.pdf