Temporal Variation of The Charged Cosmic Ray Fluxes

Francesco Faldi Tutors: Nicola Tomassetti, Valerio Vagelli

First Year PhD Report, XXXVII Cycle

28-10-2022

SOLAR ACTIVITY AND SPACE WEATHER

- Solar Energetic Particles (SEPs) are emitted in these events
- **Space Weather** studies the effects of solar phenomena and their interactions with the environment

- The solar activity cycle has a period of 11 years, alternating between solar minimum and maximum - On the Sun's surface occasional and short duration phenomena take place: solar flares and CMEs

Cosmic Ra

SPACE WEATHER WITH AMS

- SEP Identification Algorithm development based on AMS low latency real-time data, using the AMS analysis software, starting from the preliminary test on offline data
- Algorithm reliability test and implementation at POCC, CERN

From November

SCIENTIFIC OBJECTIVES

- Characterization of temporal evolution of the cosmic ray flux (on AMS data) in quiet periods, during solar storms and follow-up
- Energetic spectra reconstruction of "Solar Energetic Particles" events, which lead to intense emissions of high energy particles in short periods of time
- Study of correlation between charged particle fluxes and solar activity or geomagnetic indexes, during solar storms (solar wind velocity, IMF strength and polarity, ecc)

Flux Time 2022 **Total Flux** Flux **SEP Flux GCR Background** Energy **1 TeV** Solar Activity Flux Time

PROTON FLUX VS RIGIDITY

 $N_{selected,i}$ $\Delta R_{i} \cdot T_{exp,i} \cdot A_{eff,i} \cdot \epsilon_{trigg,i}$ Φ_i Nselected T_{exp}

Exposure Time in seconds

 ϵ_{trig}

Effective Acceptance

Trigger Efficiency

$i = i^{th} rigidity interval$

Selected Counts relative to Proton events

THE AMS-02 EXPERIMENT

EVENT SELECTION CUTS – COMMON ANALYSIS

Trigger: Any Physical Trigger

Inner Tracker: Unitary charge - Hit on each layer - Track $\chi^2 < 10$

Time of Flight: Unitary charge on Upper ToF - β > 0.3

InnerLayer 1: Unitary charge - Hit on Layer 1 - Track χ^2 < 10 - Fiducial Volume

-> InnerL1 Counts

EVENT SELECTION CUTS - COMMON ANALYSIS

Trigger: Any Physical Trigger

Inner Tracker: Unitary charge - Hit on each layer - Track $\chi^2 < 10$

Time of Flight: Unitary charge on Upper ToF - β > 0.3

InnerLayer 1: Unitary charge - Hit on Layer 1 - Track χ^2 < 10 - Fiducial Volume

-> InnerL1 Counts

Full Span: Unitary charge - Hit on Layer 9 - Track χ^2 < 10 - Fiducial Volume

Lower ToF: Unitary charge on Lower ToF

-> Full Span Counts

PROTON FLUX VS RIGIDITY

 $N_{selected,i}$ $\Delta R_i \cdot T_{exp,i} \cdot A_{eff,i} \cdot \epsilon_{trigg,i}$ Φ_i

 ϵ_{trig}

Trigger Efficiency

$i = i^{th} Rigidity Interval$

Selected Counts relative to Proton events

Exposure Time in seconds

THE GEOMAGNETIC RIGIDITY CUTOFF

- Charged CRs are **deflected** by the geomagnetic field -> **minimum rigidity** required to reach Earth - Geom. Cutoff depends on position and, at a given location, on direction/charge of incoming particle

THE GEOMAGNETIC RIGIDITY CUTOFF

- The **Rigidity Cutoff** is lower near magnetic poles —> A lot of **low energy** particles reach Earth
- In the South Atlantic Anomaly (SAA) the livetime is almost null due to the intense flux

Longitude

EXPOSURE TIME

- **Exposure Time: seconds**, weighted by the detection in the AMS FoV (for each rigidity bin)
- The time with **detector not in nominal status** (ca excluded from reconstruction

- Exposure Time: seconds, weighted by the detector livetime, with rigidity above maximum IGRF cutoff

- The time with detector not in nominal status (calibration, ISS technical activities) or in the SAA are

PROTON FLUX VS RIGIDITY

 $N_{selected,i}$ $\Delta R_i \cdot T_{exp,i} \cdot A_{eff,i} \cdot \epsilon_{trigg,i}$ Φ_i

i = *ithRigidity Interval*

Selected Counts relative to Proton events

ACCEPTANCE CORRECTION

L9 Pickup Correctio

efficiency on **DATA** / efficiency on **MONTECARLO Correction:**

n	ToF Correction	Track Correction

PROTON FLUX VS RIGIDITY

 $N_{selected,i}$ $\Delta R_i \cdot T_{exp,i} \cdot A_{eff,i} \cdot \epsilon_{trigg,i}$ $\Phi_i \Rightarrow$

i = *ithRigidity Interval*

Selected Counts relative to Proton events

TRIGGER EFFICIENCY FOR PROTONS

Trigger Efficiency (After Proton Selection) =

There are seven types of trigger in AMS-02:

Unbiased: only 1/100 is registered

100*(Unbiased Charged + Unbiased EM) + Any Physical Trigger

PROTON FLUX COMPARISON

some Montecarlo events)

- Different flux shape probably due to Unfolding (under investigation, wrong rigidity reconstruction in

CAESAR PROJECT CONTRIBUTION

- of the the Italian Space Agency (ASI), called ASPIS (ASI SPace Weather InfraStructure)
- WP1210: multi-instrument real-time investigation of SEP events -

- Caesar has the objective of realizing the prototype of the scientific data centre for Space Weather

AMS-02 MONITORING SHIFT ROLE

- covers 8 hours per day for 6 consecutive days

- The shift role is dedicated to the monitoring of crucial subsystems of the detector; every shifter

- I've been trained to the TEE shifter role (Tracker, TRD and ACC) and contributed for a total of 21 shifts

SCHOOLS, CONFERENCES, PHD COURSES

PhD Courses

- "Nanosystems 2", F. Ripanti
- "Introduction to Space Physics", N. Tomassetti
- "Teaching and Learning Physics", G. Organtini

Schools

- "INFN School of Statistics 2022", 15 - 20 May 2022, Paestum

Conferences

- "SIF 2021, 107° Congresso Nazionale", 13 17 September 2021, Online
- "Secondo Congresso Nazionale SWICo", 9 11 February 2022, ASI Roma
- "SIF 2022, 108° Congresso Nazionale", 12 16 September 2022, Milano

PUBLICATIONS

Comunicazione tra le menzioni speciali del 107° congresso che ha permesso la pubblicazione su "Il Nuovo Cimento

IL NUOVO CIMENTO **45 C** (2022) 79 DOI 10.1393/ncc/i2022-22079-6

COMMUNICATIONS: SIF Congress 2021

Real time monitoring of the radiation environment o ISS with AMS-02

F. Faldi

Dipartimento di Fisica e Geologia, Università degli Studi di Perugia - Perugi

received 30 January 2022

o SIF, o C″	Proceeding contributo SWICo 2022, in fase di reviewing su "Rendiconti Lincei - Springer Nature"
	Real time monitoring of Solar Energetic Particles outside the ISS with the AMS-02 instrument
on the	 Francesco Faldi^{1,2*}, Bruna Bertucci^{1,2}, Nicola Tomassetti^{1,2} and Valerio Vagelli³ ¹Department of Physics and Geology, University of Perugia, Perugia, 06123, (PG), Italy. ²INFN - Sezione di Perugia, Perugia, 06123, (PG), Italy. ³ASI, Roma, 00133, (RM), Italy.
ia, Italy	*Corresponding author(s). E-mail(s): francesco.faldi@studenti.unipg.it;

Summary

- period considered in the analysis, is under construction
- the temporal flux and the SEP-only rigidity flux construction
- Other: Caesar Project contributions, shift role for AMS-02, three contributions at conferences, one summer school attended

- Main analysis: the proton flux with respect to rigidity, for the whole time

- Future work: once the rigidity flux is fixed, it will constitute the basis for

