

First year of PhD report

Lisa Fantini, XXXVII cycle of the PhD in Physics

Supervisors: Giuseppina Anzivino, Viacheslav Duk

28th October 2022

Outline

- Research activity: LHCb experiment
 - Search for Heavy Neutral Leptons
 Data analysis

Detector work

- Light Leak Detector
- RICH Upgrade test beam _
- Additional activities:
 - Courses
 - Others...

LHCb experiment at LHC

Large Hadron Collider beauty (LHCb):

- one of the four big LHC experiments
- Forward spectrometer of ~20m
- Different **subdetectors** for:
 - tracking
 - identification
 - measuring energy/momentum of particles

Large Hadron Collider (LHC):

- the highest energy accelerator in the world
- proton-proton collisions

b is for beauty

LHCb is dedicated to the physics of beauty quark:

- differences between matter and antimatter (Baryon asymmetry of the Universe)
- B meson rare decays (sensitive to physics beyond Standard Model)
- beyond the baseline: rare decays of $D, \Sigma, \Lambda, K...$

B mesons:

- absent in the Universe today (\rightarrow unstable)
- abundant immediately after Big Bang

HNLs: an introduction

- Some experimental observations cannot be explained by Standard Model (SM) without a minimal extension:
 - 1. Neutrino oscillations
 - 2. Baryon asymmetry of Universe
 - 3. Dark matter
 - → extension to the vMSM (neutrino Minimal Standard Model) by addition of Heavy Neutral Leptons (HNLs): [arXiv:hep-ph/05030]
 - massive right-handed neutrinos
 - singlets under SM gauge
 - \rightarrow only interaction via mixing with the SM neutrinos

HNLs: production and decay

HNLs: state of the art

Main HNLs (N) searches from B meson decays

- Belle experiment:
 - → $B \rightarrow XlN(\rightarrow l\pi)$ with $l = \mu, e$, limits on $U_{\mu N}^2$ and U_{eN}^2 [arXiv: 1301.1105]
- LHCb experiment:
 - → $B \rightarrow \mu N (\rightarrow \mu \pi)$ limit on $U_{\mu N}^2$ (Run 1 data) [arXiv:1401.5361v2]
 - → $B \rightarrow X\mu N (\rightarrow \mu \pi)$ ongoing (Run 2 data)

Current limits on light-heavy neutrino mixing angles

Opportunity to probe mixing with electrons and set new limit on $U_{eN}U_{\mu N}$

Lisa Fantini

Analysis strategy: aim

• search for Heavy Neutral Leptons (N) in B^+ and B_c^+ decays

- quest for a bump in the $m_{\pi l}$ invariant mass spectrum
 - ➤ testing different hypotheses of neutrino mass (m_N) and lifetime (τ_N): - $m_N \in [0.5, 5, (6)]GeV$ = $\tau_m \in [0, 1000]ms$
 - $-\tau_N \in [0, 1000] ps$
 - both prompt and displaced reconstruction categories
 - ➢ Run 2 data (2016-2018)

Analysis strategy: signal channels

HNLs can be <u>Dirac</u> or <u>Majorana</u> neutrinos $N \neq \overline{N}$ $N = \overline{N}$

Two different lepton signatures:

1) Opposite Sign (OS) leptons:

$$B^+_{(c)} \to \mu^+ N(\to e^- \pi^+) \quad B^+_{(c)} \to e^+ N(\to \mu^- \pi^+)$$

→ Majorana and Dirac neutrino Lepton Flavour Violation

2) Same Sign (SS) leptons:

$$B_{(c)}^{+} \to \mu^{+} N(\to e^{+}\pi^{-}) \quad B_{(c)}^{+} \to e^{+} N(\to \mu^{+}\pi^{-})$$

→ only Majorana neutrino Lepton Flavour Violation and Lepton Number Violation

Analysis strategy: normalization channels

Number of signal events:

difficult to evaluate

$$N_{sig} = N_{B \text{ in data}} BR(B \to lN)BR(N \to l\pi) \varepsilon_{sig}$$

solution: normalization to a well known process

$$N_{sig} = N_{norm} \frac{BR(B \rightarrow lN) BR(N \rightarrow l\pi) \varepsilon_{sig}}{BR(norm \, process) \varepsilon_{norm}}$$

In my analysis: possible normalization channels

$$B^+ \to K^+ J/\psi(\to \mu\mu) \qquad B^+ \to K^+ J/\psi(\to ee)$$

$$B^+ \to \pi^+ K^0_s (\to \pi \pi)$$

Current status of the analysis

- Produced signal MC samples (2017) for one mass point and two lifetime points $m_N = 3 \ GeV$ $\tau_N = 0 \ ps, 20 \ ps$
- Produced MC samples for the first normalization channel: $B^+ \rightarrow K^+ J/\psi(\rightarrow \mu\mu)$ (2017)
- Root files with variables for data are ready
- Developed strategy to simulate the many mass and lifetime points of signal
- Ongoing studies on normalization
- Ongoing studies on cut-based signal selection
 → particular attention to PID variables

• Development of a MVA signal selection (expected higher efficiency with respect to cut-based one)

• First signal efficiency studies

• Production of signal MC samples with larger lifetime (displaced selection)

• Continue the study of normalization channels

Light Leak Detector

- Perugia group is part of the LHCb team that deals with **RICH (Ring-imaging Cherenkov) detectors** → crucial for particle identification
- I have worked on Light Leak Detector (LLD)→
 - subsystem for detection the optic photons from outside the experimental setup
 - made of Photo Multiplier Tubes (PMTs) (6 for RICH1 and 6 for RICH2)
 - gives an alarm when the rate of optical photons in the RICH chamber exceeds a specified threshold
 - monitoring of luminosity at interaction point
- LLD designed and built entirely by the LHCb Perugia group
- My contribution:
 - calibration
 - testing of readout electronics
 - data analysis during commissioning
- Now: LLD is installed at CERN and integrated in the RICH control system Lisa Fantini

RICH Upgrade test beam (October 2022)

- LHC Run 3 is just started (2022)
- R&D for Run 4 (2029) and Run 5 (2035) ongoing
 → higher luminosity (HL-LHC), RICH upgrade needed
- October 2022 test beam:
 - test of faster electronic for MAPMT (RICH photon sensors) readout → FastIC
 - measurement of FastIC time resolution
- My contribution:
 - optimization of MCP (external trigger) time resolution
 - data taking

Experimental setup

Courses attended

✓ with exam/laboratory

- Effective Field Theory
 - Theory (Buttazzo)
 - Spintronic (Tatara)
- Uncertainty and Probability (D'Agostini)
- Nanosystems
 - Molecular nanomagnets for quantum computation (Garlatti/Chiesa)
 - Raman spectroscopy (Ripanti)
 - Spectroscopy characterization of nanostructured material (Pedio)

- Physics at Colliders (Gallinaro)
- Introduction to space physics (Tommasetti)
- Flavour physics (Ruggiero) 🗸
- Multimessenger
 - Gamma Rays (Tosti)
 - Neutrinos (Germani)
 - Gravitational waves (Punturo)
- Teaching and learning physics (Organtini)

Meetings:

- LHCb Italia (LNF)
- LHCb week (Dortmund)

Talks:

• Rare Decays WG

Papers:

"Search for exotic hadrons with the CMS experiment" Il Nuovo Cimento 45 C (2022) 106 DOI 10.1393/ncc/i2022-22106-8 Schools:

• INFN School of Statistics (Paestum)

Activities at LHCb:

- Data Manager shifts in LHCb Control Room
- RICH piquet shift (next November)

Thanks for the attention!

