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- Three body system: a binary system under the 
gravitational interaction of a supermassive black 
hole. 

- Hierarchical in scale:  

- test particle, Schwarzschild BH, 
Kerr BH  

- Extreme mass ration inspirals 
(EMRIs)

m ≪ M ≪ M*

m → M →
M* →

m → 0 ⇒

Tidal deformation of a binary system induced by a Kerr 
black hole [Camilloni, Grignani, Harmark, Oliveri, Orselli, Pica]



‣ EMRIs are primary target for future GWs 
observations 

‣ Binary system orbital frequency in the inspiral 

regime  

‣  kHz  LIGO-VIRGO 

‣  mHz  LISA 

‣ Abundance of sources  

‣ Interesting dynamics natural 

perturbative approaches!

ω = G
m1 + m2

d3

ω ∼ 10−2 ÷ 10 ⇒

ω ∼ 0.1 ÷ 100 ⇒

→ μ =
m
M

≪ 1 ⇒

Extreme Mass Ratio Inspirals 

μ =
m2

m1
∼ 10−4 ÷ 10−6

Ex

 
m1 ∼ 106 M⊙

m2 ∼ 10 M⊙
⟹ ω ∼ 10 mHZ



‣ Two different length scales: the mass of the intermediate black hole  and the radius of the curvature 
generated by the third body evaluated in the position of the binary system  

‣ In order to be able to study the physics on the scale of  we need to require that the tidal interaction is 
weak  small-tide approximation  

‣ If  is the distance between the binary system and the big black hole,  is the orbital velocity 

 and  then  

‣  should be a small quantity in order to have a weak tidal interaction. To satisfy this condition we will use 

the small-hole approximation                  independently of  and  ! 

‣ This allows us to study how the “external spacetime” affects the binary system, not only when 
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Tidal Scales 

[Yang, Casals (2017)]



‣ In the tidal approximation the metric which we use to describe the tidally deformed black hole is expressed as a cover 
expansion of , with  being the distance from the black hole .  

‣ We are only interested in the quadrupole order of the perturbed metric, meaning that we will consider only terms up to 

order  

‣ The metric of any vacuum spacetime can be constructed in the neighborhood of any geodesic world line and express in 
term of two sets of tidal multiple moments [Poisson, Vlasov (2010)] 
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‣ Fermi normal coordinates  

‣ Tidal moments are defined through the Weyl tensor once it is evaluated on the Kerr geodesic 

‣ where  is the Carter tetrad for Kerr spacetime. 

‣ From the symmetries of Weyl tensor  10 independent components encoded in two symmetric-trace-free 
(STF) tensors 

‣ We refer to  and  as the tidal quadrupole moments.
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ℰab ℬab

Tidal Moments of a Kerr perturber 
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‣ The construction of tidal multipole moments stems from the identification of a local 
orthonormal tetrad which is designed to be an inertial frame parallel transported along 
the Kerr geodesic motion [Marck (1983)]  

‣ The tetrad considerably simplifies for circular equatorial geodesics in Kerr 
 

‣  is an angle introduced in order to parallel transport the tetrad  along 
the geodesic

̂r = d, · ̂r = 0, ̂θ = π/2
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‣ It is convenient to introduce the unit radial vector , oriented in the -direction and written in Cartesian 
components  

‣ In order to study all possible orientations for the binary system around the Kerr BH, we introduce the Euler angles  

‣ We define the unit radial vector  as 

‣ This is only one among the possible 12 equivalent combinations of Euler matrices 

‣ Equatorial orbit in BBH  -angle can be eliminated by redefinition of the Schwarzschild azimuthal angle  

Ωa ̂r

Ωa

⇒ α ϕ

Spherical Coordinates 

Ωa = RχRβRαΩa
*, Ωa

* = (sin θ cos ϕ, sin θ sin ϕ, cos θ)



Any orientation of a Schwarzschild orbit with respect to the Kerr perturber is specified only by the two angles  and β χ

Possible Orientations



‣ It is useful to introduce the dimensionless perturbative parameter , under the assumption 

 

‣ Explicitly  and  

‣ The tidal fields generated by the outer body deform the orbits of the unperturbed Schwarzschild metric  

‣ If  solves the geodesic equation in the unperturbed Schwarzschild geometry,  , the effect of 
the tidal deformation will reflect in a deviation from the unperturbed curve  

                                                   

‣ In general the tidal moments depend on circular orbits are deformed into elliptic orbits  

‣ We want to construct the Hamiltonian per unit mass squared  of the EMRI + tidal interaction system  

‣ The radial correction enters the Hamiltonian only with terms of order , as a consequence it is possible to 
replace the true trajectory in the perturbed spacetime with the “mean” circular trajectory
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Tidal Shift



‣ Define  

                                                                             

    where  is the mean circular orbit on  

‣ This averaging procedure allows one to consider the secular dynamics of bound orbits in the tidally deformed spacetime  

‣ The Hamiltonian per unit mass squared  of the EMRI + tidal interaction system is given by  

‣ Starting from an unperturbed circular geodesic, the total momentum  can be written as 
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‣ Using the expressions for  and  the secular Hamiltonian becomes  

‣ Where the effective perturbative parameter  contains all the information regarding how the binary 
system is oriented, as well as where it is located  with respect to the Kerr perturber 

‣ In the equatorial plane of the Kerr black hole ,  reduces to 
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‣ The ISCO (Innermost stable circular orbit) can be obtained upon demanding the Hamiltonian  to be on-shell, the 
orbit to be circular and that the radial perturbations become stationary  

‣ Using these conditions and expanding at the first order in , it is possible to determine the secular shifts caused by 
the tidal perturbations to the energy angular momentum and radius of Schwarzschild  

‣ At the leading order one finds , namely the values for the radius, energy and angular momentum of 
the ISCO for an unperturbed Schwarzschild black hole 

‣ At the first order in  one determines the corrections to the three quantities  
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‣ The effective secular perturbative parameter  is new! It allows to specify not only the orientation of the 
binary system but also its location with respect to a spinning tidal perturber  

‣ We also computed the shift in the ISCO orbital frequency. In general for quasi-circular orbits the orbital 
frequency can be determined by means of the ratio  

    where  

‣ In the case in which the binary system is located asymptotically away from the Kerr perturber, , every 
information about the black hole spin parameter  is lost and we recover the results already known in the 
literature [Yang, Casals (2017) & Cardoso, Foschi (2021)]
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‣ We computed the ISCO shifts induced by the tidal moments of a Kerr black hole on an EMRI  

‣ ISCO shifts of the energy, angular momentum, radius and angular velocity for any value of the distance, 
the spin of the Kerr black hole and the inclination of the orbit of the test particle around the 
Schwarzschild black hole

Summary 

Perspectives 
‣ It is possible to compute the frequencies of the motion through the action angle variables 

‣ Non circular orbits, eccentricity, resonances!  

‣ Corrections to the orbital precession  

‣ ISO (Innermost Stable Orbit)!
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