

Measurement of the $t\bar{t}$ charge asymmetry in highly boosted events in the single-lepton channel at 13TeV

November 9th, 2022

LHC TOP WG meeting

UIC University of Illinois at Chicago

Titas Roy

Introduction

- The <u>heaviest elementary particle</u> top quark (m_{top} ~175 GeV) plays a special role in SM and BSM processes
 - close to the EWK breaking scale and high Yukawa coupling
 - decays before hadronizing ->we can study the decay products
- At LO, $t\bar{t}$ symmetric under charge conjugation. At higher orders asymmetries from $q\bar{q}$ and qg initial states
- As a consequence of these asymmetries, the top quark is preferentially produced in the direction of the incoming quark.

Charge Asymmetry in boosted topologies

- At high momemtum transfer the contribution of valence quarks is higher
 - hence measuring A_C in boosted $t\bar{t}$ is more sensitive to any BSM process that might alter A_C
- This measurement uses dedicated techiniques for:
 - Hadronically decaying top quark (top-tag and W-tag) using substructure variables.
 - leptonically decaying top quark no isolation cuts are applied, lepton-jet cleaning applied, kinematic cuts for the boosted topology

$$A_{C} = \frac{N(\Delta|y| > 0) - N(\Delta|y| < 0)}{N(\Delta|y| > 0) + N(\Delta|y| < 0)}$$

LHC

$$\Delta |y| = |y_t| - |y_{\overline{t}}|$$

Event selection

- Exactly one lepton, with no isolation requirement
 - $p_T > 55$ (85) GeV for muon (electron)
- >=2 AK4 jets, leading jet with p_T >150 GeV, at least one of AK4 jets is b-tagged
- AK8 PUPPI jets with $p_T > 400$ GeV
- Kinematic cuts to control QCD multijet background:
 - $\Delta R(\text{lepton,jet}) > 0.4 \text{ OR } p_{T(\text{rel})}(\text{lepton,jet}) > 25 \text{ GeV}$
- MET > 50 (120) GeV in muon (electron) channel
- MET+ $p_T(\mu) > 150$ GeV in the muon channel

UIC University of Illinois at Chicago

Top and W tagging

 Jets from a hadronic boosted top quark (W boson), will have three (two) groups of clusters where the jet energy is concentrated. These structures correspond to the quarks from the decay.

 Sub-structure techniques are applied to large footprint jets to identify top quarks:

- Jet mass near to the top (W) mass (Soft drop mass: is a jet grooming algorithm to remove the soft and wide angle radiation from a jet)JHEP03(2011)015
- Compatibility of a large radius jet having 3 (2 or 1 subjets) N-subjetiness: JHEP05(2014)146

UIC University of Illinois at Chicago

	mSD	$\tau_{32} = \tau_3 / \tau_2$
T-tagging	105 < m _{SD} < 220	< 0.65
W-tagging	65 < m _{SD} < 105	< 0.45

Event Reconstruction

$$\chi^{2} = \chi^{2}_{lep} + \chi^{2}_{had} = \left[\frac{M_{lep} - \bar{M_{lep}}}{\sigma_{M_{lep}}}\right]^{2} + \left[\frac{M_{had} - \bar{M_{had}}}{\sigma_{M_{had}}}\right]^{2}$$

- Top quark pair events reconstructed by assigning the four vectors of the final decay lacksquareproducts to either the *leptonic* (*t*_{*lep*}) or *hadronic* (*t*_{*had*}) top leg
- For assigning the jets: lacksquare

UIC University of Illinois at Chicago

- **boosted**: Top-tagged jets assigned to t_{had} , AK4 jets with $\Delta R > 0.8$ from t_{had} are assigned to t_{lep}
- semi-resolved: W-tagged jet assigned to t_{had;} all possible assignments of AK4 jets with $\Delta R > 0.8$ from W-tag are assigned to t_{lep} or t_{had} or neither.
- **Resolved:** all possible assignments of AK4 jets constructed and assigned to t_{lep} or *t_{had}* or neither.
- All combinations are tested, but only the one satisfying minimum χ^2 is kept-as reconstructed top masses are expected to be close to the top quark mass from simulation.

Titas Roy, BOOST 2022

tlep **≁**had max

Final event categorization

The measurements is performed in different channels corresponding to boosted, semi-resolved and resolved topologies defined as:

University of Illinois at Chicago

Titas Roy, BOOST 2022

Vl

Unfolding

The goal of unfolding is to **correct the reconstructed data by removing the smearing** which is a result of poor detector resolution and acceptance We are using a likelihood-based unfolding, using the **Higgs Combine tool**

$$\mathscr{L}_{k} = \prod_{j=1}^{N_{reco}} P(n_{j}; \sum_{i=1}^{N_{gen}} A_{ij}(\overrightarrow{\delta_{u}}) \mu_{i} + b_{j}) N(\overrightarrow{\delta_{u}})$$

The way we construct the likelihood is via the datacard

- Each datacard represents a reconstructed bin
- Each datacard describes the contribution from each of the common truth bins $\Delta |y_{gen}| > 0, \Delta |y_{gen}| < 0.$

We have 12 datacards:

- •2 lepton flavors (electrons and muons)
- 2 mass bins
 - 750 Gev < Mttbar < 900 GeV
 - Mttbar > 900 GeV
- **3 years** (2016,2017,2018)

UIC University of Illinois at Chicago

 $\Delta |y|$ migrations are taken into account with the datacard.

Events used in Unfolding

UIC University of Illinois at Chicago

Titas Roy, BOOST 2022

Charge Asymmetry in the Full phase space

that is performed, hence all error propagation is taken care of

$$A_C = \frac{N_{unf}(\Delta |y_{gen}| > 0) - N_{unf}(\Delta |y_{gen}| < 0)}{N_{unf}(\Delta |y_{gen}| > 0) + N_{unf}(\Delta |y_{gen}| < 0)}$$

acceptance $\alpha \epsilon$ measured at generator level, corrects back from the fiducial phase space of a given channel to the full phase space :

$$A_{C}^{full} = \frac{\alpha \epsilon^{neg} \times r_{pos} \times N_{truth}(\Delta |y| > 0) - \alpha \epsilon^{pos} \times r_{neg} \times N_{truth}(\Delta |y| < 0)}{\alpha \epsilon^{neg} \times r_{pos} \times N_{truth}(\Delta |y| > 0) + \alpha \epsilon^{pos} \times r_{neg} \times N_{truth}(\Delta |y| < 0)}$$

$$r_{pos} = \frac{\alpha \epsilon^{pos}}{\alpha \epsilon^{neg}} r_{neg} \times \frac{N_{truth}(\Delta |y| < 0)}{N_{truth}(\Delta |y| > 0)} \times \frac{1 + A_C^{full}}{1 - A_C^{full}}$$

Titas Roy, BOOST 2022

UIC University of Illinois at Chicago

Unfolding with the Combine tool enables us to extract the $A_{\rm C}$ directly from the maximum likelihood fit

$$N_{unf}(\Delta|y_{gen}| > 0) = r_{pos} \times \frac{N_{truth}(\Delta|y| > 0)}{\alpha \epsilon^{pos}}$$
$$N_{unf}(\Delta|y_{gen}| < 0) = r_{neg} \times \frac{N_{truth}(\Delta|y| < 0)}{\alpha \epsilon^{neg}}$$

Results

UIC University of Illinois at Chicago

MC stats are included using Barlow-Beeston lite method but not shown here

Titas Roy, BOOST 2022

Full phase results can be compared to theory (Phys. Rev. D 98, 014003) values directly

11

In summary

- https://arxiv.org/pdf/2208.02751.pdf
- with CMS data at $\sqrt{s}=13$ TeV using dedicated techniques for:
 - the hadronic decay of the top quark- using substructure variables
 - **non isolated leptons** in the leptonic decay of the top quark
- Maximum Likelihood unfolding used to extract the charge asymmetry in the full phase space and found it to be in agreement with theoretical values within uncertainty.
- We have unfolded to the full phase space $A_C^{full}(\%) = 0.69 \pm 0.44(\text{stat})^{+0.34}_{-0.42}(\text{syst}) = 0.69^{+0.65}_{-0.69}$, can be compared to NNLO in QCD perturbation with NLO EWK corrections $0.94^{+0.05}_{-0.07}\%$

We have presented the first measurement of charge asymmetry in boosted ttbar I+jets events

Backup

UIC University of Illinois at Chicago Titas Roy, BOOST 2022

Forward-Backward Asymmetry in top pair production at the Tevatron

- Investigation of the charge asymmetry in heavy quark production was performed at the Tevatron accelerator by CDF and D0 experiments.
- Tevatron was a very suitable collider for studying $t\bar{t}$ charge asymmetry due to the dominant $q\bar{q} \rightarrow t\bar{t}$ production channel.
- Asymmetry, defined as:

$$A_{\rm FB} = \frac{N(\Delta y > 0) - N(\Delta y < 0)}{N(\Delta y > 0) + N(\Delta y < 0)},$$

• First results measured in D0 and CDF disagree with the MC@NLO based predictions, with most significant discrepancy above 3σ

Titas Roy, BOOST 2022

Phys. Rev. Lett. 120 (2018) 042001.

Baseline selection for e/\mu + jets events

Muons

- HLT_Mu50_v*
- Exactly one muon
 - CutBasedGlobalHightPt
 - $p_T > 55 GeV and |\eta| < 2.4$
- MET > 50 GeV; HT_{lep} > 150 GeV
- No isolation requirement
- 2D kinematic cut

UIC University of Illinois at Chicago

- At least two AK4 (CHS) jets
 - p_T(jet1) >150GeV & p_T(jet2) >50 GeV; |η| < 2.4
 - >=1 b-jets are identified with DeepNN Jet Tight working point
- AK8 PUPPI jets with $p_T > 400$ GeV and $|\eta| < 2.4$
- Veto on events with second lepton $p_T > 20$ GeV, $|\eta| < 2.4$

- Exactly one electron
 - cut-based TightID
 - $p_T > 85 GeV and |\eta| < 2.4$
- MET > 120 GeV
- No isolation requirement
- 2D kinematic cut
- At least two AK4 (CHS) jets:

Electrons

 HLT_Ele50_CaloIdVT_GsfTrkIdT_PFJet165_v* OR HLT_Ele115_CaloIdVT_GsfTrkIdT_v*

• $p_T(jet1) > 185GeV \& p_T(jet2) > 50 GeV; |\eta| < 2.4$ • >=1 b-jets are identified with DeepNN Jet Tight working point

• AK8 PUPPI jets with $p_T > 400$ GeV and $|\eta| < 2.4$

• Veto on events with second lepton $p_T > 20$ GeV, $|\eta| < 2.4$