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The EPR argument

-

“If, without in any way disturbing a system, we can predict with certainty (i.e. with
probability equal to unity) the value of a physical quantity, then there exist an element of
physical reality corresponding to this physical quantity”

— Einstien, Podolski and Rosen, 1935 )

 Reality

(On based of criteria of physical reality, they argued that QM was not a complete theory)

Ex: InQM, in the case of two physical quantities described by non-commutating operators, the knowledge of (say, spin
component in x direction) makes impossible the knowledge of the other (y, zcomponent of the spin ).

EPR argue on that: In QM
Either the description of reality given by the wave function is not complete.
Or, these two quantities cannot have simultaneous reality.

U Locality

The res)ult of a measurement on one system be unaffected by operations on a distant system with which it has interacted in
the past

QM violates both local and real requirements



The EPR argument

s As per EPR, the QM behavior could be explained by additional variables called Local Hidden variables
(LHV). These would restore locality and causality to the theory (and they demonstrated it for the Stern
Gerlach experimental observations).

*» It seems difficult that time to experimentally discriminate QM and general hidden variable theories.

¢ In 1964, John Bell, made a fundamental contribution, showing that no deterministic hidden variable
theory can reproduce al the statistical predictions of quantum mechanics(1964) derived simple
inequalities that can discriminate QM from any local-real hidden variable theories: Bell inequalities

** He showed we can’t explain all QM statistical predication by LHV, it can be easily show mathematically
for maximally entangled states.

| will go through this step by step:
1. What is an entangled state
2. What is the Bell inequality



general:

separable:

entangled:

entangled:

fnmng[ement
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CHSH iﬂ@&luaﬁty [Clauser, Horne,

Shimony, Holt, 1969]

Alice . 5 (spin 0) Bob
A

a (spin 1/2) p (spin 1/2)
® - - - ®

a (s) The experiment consists of 4 sessions:

1) Alice and Bob measure s [a] and s,[ /], respectively.
Repeat the measurement many times and calculate
f{! (S_r) (S{{ - Sb)- b.r (S\)
2) Repeat (1) but for @ and 5"

b (S/")

3) Repeat (1) but for " and b.
4) Repeat (1) but for " and b".

Finally, we construct

1
Rcusu = 5 |(Susb> — (ssp) + (sus) + (S.:;"S.::)l



CHSH ineolua[ity in LHV Theories

1
Repsn = 5 ‘(5};5};) — (s,8,) + (s5,5,) + (SU*S..-')‘ <1

[{ab) — (ab")| = ‘ /dA (ab — ab’) P‘ ——j + aba't/ P — (+ aba't'P) = 0
_ /d/\ lab(1 £ a'b)P — alf (1 + a'b) P|

< [(M(|ab||l + 'V |P + |ab||1 £ a’b|P)

b:Sb

lab| = |ab'| =1

1+a'b'|,|lxa'b| =0
= fd—h[(lia’f}’)P+(1ia*b)p] [1+a'b’]. |l +a'b]

= 2+ ({(a'b') + (a'b))

(ab) = /a()\)b()\)P()\)d)\

= Rousn = 5 ((ab) — (ab)| + |(@'b) + (ab)]) <1

max (RCHSH) — 11ax (ﬁCHSH) /P()\)(f/\ = 1
(@.b.a',b) (@, b.a', b)

J




CHSH ineclua[ity in QM

= Lets consider an QM wavefunction of singlet state of two spin % particles

oon T =)= —+).

one can show

(sg8p) = (PO 5,5, POy = (4-b)

violates the upper
bound of hidden
variable theories!

1
Rensn = 5 [(5,5) = (5:5) + (5.,8,) + (5,5,) ] l

therefore

— % ‘(ﬁ-ﬁ) —@-b)+ @b+ @-b)| =42
e ——
L _i 1 1
V2 V2 V2 V2

fa))
=



. entangled | 'V,,,)

1  (HV theories)
Bl violation
Repsy = 1

IA

RCHSH

V2 @w

\

Q: Could we check this experimentally?



A: We already has been observed Bell inequality violation (R-ysy = 1)
in low energy experiments:

= Entangled photon pairs (from decays of Calcium atoms)
Crauser, Horne, Shimony, Holt (1969), Freedman and Clauser (1972), A. Aspect et. al.

(1981, 1982), Y. H. Shih, C. O. Alley (1988), L. K. Shalm et al. (2015) [50]

= Entangled proton pairs (from decays of 2;,)
M. M. Lamehi-Rachti, W. Mitting (1972), H. Sakai (2006)
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Alain Aspect John F. Clauser Anton Zeilinger
Université Paris-Saclay & J.F. Clauser & Assoc., University of Vienna,

Ecole Polytechnique, France USA Austria

"for experiment med sammanflatade fotoner som pavisat brott mot Bell-olikheter och
banat vag for kvantinformationsvetenskap”

“for experiments with entangled photons, establishing the violation of Bell inequalities and

- joneering quantum information science”
#nobelprize g 2




Can we test Bell inequality violation (R-ysy = 1) and
entanglement at High energy colliders?

* Entanglementinpp - tt - @ LHC — Y. Afik, J. R. M. de Nova (2020)

* Bellinequality testinpp > tt ~ @ LHC M. Fabbrichesi, R. Floreanini, G. Panizzo (2021) C. Severi, C. D.

Boschi, F. Maltoni, M. Sioli (2021) J. A. Aguilar-Saavedra,
J. A. Casas (2022)

* Bellinequality testin H > WW* @ LHC - A.J. Barr(2021)

We are interested in study of Quantum property testinH - tt
@ high energy colliders e+ e-



CDensity matrix

probability of having | ¥,)

- For a statistical ensemble {{p, : |\¥,)}. {p>: |¥)}, {ps: |¥5)}, -}, we define the

density operator/matrix

p = ZP&J‘I’Q(‘I’H Pab = (€alplen)
k

- Density matrices satisfy the conditions:

e it = p
e Irp =1
e p is positive definite, that is 7|p); (¢|p|e) > 0.

- The expectation of an observable O is calculated by

(O) = Tr [é,a]

IA
ot

0 < pi

Zpk =1

k

<€a. | Eb} — {Sab



Density matrix
Spin 1/2 biparticle system
- The spin system of a and / particles has 4 independent bases:

(|€l>> |€2>a |€3)a |€4>) = (|++>>|+_>>|_+>e |__>)

« ==> p IS a 4 x 4 matrix (hermitian, Tr=1). It can be expanded as 3% 3 matrix

|

(1®1+ Bi-0i®1+ Bi-1®0; + Cij-0: ?0;) B;,B;,C;; €R

H= | —

- For the spin operators §* and §, o |
spin-spin correlation

(89y =Tr ["“ "] B, (7;‘{3) =Tr [é"fp"] =B, (A”’“ ) = ['\“A’Gp] G

Once we know C matrix. We can compute different quantum information like Entanglement etc.
Q: How to compute C matrix in high Energy Physics?



Entanglement
- If the state is separable (not entangled),
o B
p=> Prpf @ p
k
then, a modified matrix by the partial transpose
P = prp @ (o))"
k

Is also a physical density matrix, i.e. Tr=1 and non-negative.

« For biparticle systems, entanglement <= pTﬁ to be non-positive.

+ A simple sufficient condition for entanglement is:

EEC11+C22_C33>’1

Peres-Horodecki
(1996, 1997)



Density matrix of H-ttt™

m )
&= ———kHy(cos 5+iyssin d) y, SM: (k, ) = (1,0)
VsMm

The spin density matrix for the two taus in H - ¥t~ is given by

- 0 0 0

M*nanm B 1 0 1 6—7125
[ Mmm 2 210 6125 1
where

M™M= cu™(p)(cosd + ivyssind)v™(p)

Using spin density matrix
we can compute B and C

m—) .
matrix

Pmmn,mn

oo OO

1 0 0 SM (8)=0 cos26 sin20 0O
Cz‘j: O 1 0 . e = —si612(5 co;s)Z(S Ol



:ZJ_

int —

Density matrix of H-trt™

m
—— T xH W (COS O+1iysSINO) Y, SM: (x,0) = (1,0)

VsM

The spin density matrix for the two taus in H - ¥t~ is given by

0 0 O
1 e—z'2(5 0

0

o L0
Pmn,mn — Z ] |Mmm|2 - 9 0 €i25 1 0

man 0

where

0 0 0

M™M= cu™(p)(cosd + ivyssind)v™(p)

| Wy rr(8)) o | +—) + 7| —+)
o =0
( | + + ) (CH even) - & = /2 (CP odd)
|‘P“’m}}o<[|+—}+|—+} I‘P(*:')oc{l+—>—l—+>J
==y )
Parity: P = (5177) - (— 1)! with neny = — 1t
JP — O — —I=s5s=1
0 —> I =5 =0

—>

Using spin density matrix
we can compute Band C
matrix

cos26 sin20 0

Cji=1-sin26 cos25 0

0 0 -1



Sjoin-corre [ation matrix and CHSH in [ejoton collider
e Let’s suppose a spin 1/2 particle tis at rest and spinning in the s direction
* T- decays into a measurable particle m,._ and neutrino.

* The decay distribution is generally given by

dl’ .
— 1 1.
onc + 2. (I;.5)

e [_lIsaunit direction vector of pion of tau+ measured at the rest frame of tau.
 x € [—1,1] is called spin — analysing power. And it depends on decay mode. For7~ » 1~ + 9, =— x=1

* Wecanshow fort™ + 1% = (m,_+9;) + (M4 +9;) and and & = (IAT),,;(IAﬁ )j

do |
2 (1=c) -ml =
dé;; ( U) n(é:zj)



S}ain-cowe[ation matrix and CHSH in [ejoton collider

1
Rensi = 7 [(5:%) = (505, + (5,5 + (5,5,) ]

_ 2|xif,:3| ‘ <(‘iﬂ)”(iﬂ)g)> _ ((ia)(i,s).--) + <(ia):_,.(iﬁ)h) + ((iﬂ).,(i,a))‘ : FE!;{

Rc-pgp €an be directly calculated

once the unit vectors (4, ', b, b’) are fixed.

s we define Helicity basis at the Higgs rest frame
r=(h-kcos0)/sin®

- In the 77 rest frame, we measure the
direction of zt(7), 1" and 1~, and calculate

Ry directly with
A ~ | A 1 .
(@,a’,b,b") = (k,f,—(k + 1), —(k - I))

V2 V2

and measure CI;,-



What do we want to stucfy?

»Entanglement

* A simple sufficient condition for entanglement is:

E = C11 + CZZ — C33 > 1 J. A. Aguilar-Saavedra and J. A. Casas 2022
» Steerability

* For unpolarized cases,< §{4 > =< §lB > 0, a necessary and sufficient condition for steerability is
given by: [Jevtic, Hall, Anderson, Zwierz, Wiseman 2015]

1
Sp| = . /dQn\/nTCTCn, Slp] > 1
7r

» Bell-inequality Violation

* It can be directly calculated using unit direction of pion measured at the rest frame of tau, once he unit
vectors(a, a’, b, b') are fixed.



Stee rl n g [Schrodinger 1935]

= Steering for Alice is Alice’s ability to “steer” Bob’s local state by her measurement.

- Suppose Alice and Bob measure the observables &/ and 98, and obtained the

outcomes a and b. The state is said to be steerable by Alice, if it is not possible to
write this probability in a form: [Jones, Wiseman, Doherty 2007]

Bob’s local state

!
ZP p(alX) po(B|\),  pob|A) =Tr [ pz(2)|b)(b]]

entangled

Bl violation

steerable
Repsy = 1




Quantum information of H - tt1~ in Standard Model

|
SM values: C, = ( 1 )
-1

E=3 Entanglement — E > 1
Slp]l =2 Steerablity — $'[p] > 1

Reysy = V2 ~ 1.414  Bell-nonlocal = Rcygy > |



H — 171t~ at Lepton colliders

At LHC, main production modeis g g » H —» 7”17, which is loop-induced.
Final state 777" have large background due to tree-level g ¢ — Z* -» v~ 1%

The main handle for signal/background is the invariant mass of the visible decay products of two
taus, due to neutrinos in tau decays, invariant mass have long tails and therefore signal and
background overleap.

At Lepton colliders, main production channel near threshold is e"e* —ZH, and main background
ise”et -»Z 1t~ 1T, where pair of taus comes from an offshell photon.

We know initial 4-momentum, can reconstruct Higgs momentum, independent from Higgs decay
mode.

> 180 T T n150 —r——1— T
S 160 —_A'.l" AS F‘rellmmary + Data = "E - a) E
= - /s =13TeV, 1391’ Uncertainty i B +, . i
= ja0 —_;' BE_ 1 SRs 7 (0.92 x SM) _J g ZHA"'!,L | X
‘E - N Z—rr - LIJ - .
S 120 + + — argz;a?iﬁ;%rcunds__ N {,I - Signal+Background
b T - \
- 100 Lt g — 100 1 Fitted signal+background -
80 - - - Signal
= B - 1 K Fitted background
60 — N
wf E :
20 E- = 50 -
0 :_‘-‘ 1 1 """" !—* :
1 T T T T T T T T T T T T T[T T T T T
2 50 * = E
N b el E
o O e - —8—0—a] || ----- Lib1hig i bt
s = 3 — . PP . ;
(=] 50 __ q
=1 1 I 1 1 1 1 | 1 1 1 1 | 1 1 1 1 I 1 1 1 1 I 1 1 =
50 75 100 125 150 175 00 1 5 1 20 1 25 1 30 1 35 1 40

2
mMMC [GeV] M, o oil /1GeV



H — 171t~ at Lepton colliders

e Second advantage, ability of reconstructing two tau momenta by
solving kinematical constraints because we know initial state 4-
momentum with good precision.

* This is important for the C-matrix measurement and bell inequality
test based on angular distributions of #¥and ™ in tau rest frame.

e Since taus are heavily boosted a small error on the tau momentum
leads to a large error on the angular distribution

* Precise reconstruction of the tau momenta is therefore crucial for the
C-matrix measurement and Bell inequality test



H — 171t~ at Lepton colliders

- To determine the tau momenta, we have to
reconstruct the unobserved neutrino

momenta (py, py, p2), (P, pf po).

- 6 unknowns can be constrained by 2 mass-
shell conditions and 4 energy-momentum
conservation.

m? = (p.)* = (py + ;)

helicity
basis
(k, t, 1)

m? = (p. = (p, +p,)

. u
Pee =P = 1y = |(0p +P) + (0 + 1))

Beam Line

- With the reconstructed momenta, we define
(k, f,n) basis at the Higgs rest frame.



Simulation

ILC FCC-ee
250 240
luminosity (ab 3 3

)
)
beam resolution et (%)| 0.18 0.83-10*
)
)
)

energy (GeV
1

0.27 | 0.83-10%
240.1 240.3
414 691

beam resolution e~ (%
olete” — HZ) (fb
# of signal (¢ - BR - L

- Generate the SM events (kx, 6) = (1,0) with MadGraph5.

- We incorporate the detector effect by smearing energies of visible particles with

Etrue EDbS — (1 +og - E.d) . Jptrue D’E_ = 0.03

T

random number from the normal distribution

- We perform 100 pseudo-experiments to estimate the statistical uncertainties of the
measurements.



Results

ILC

FCC-ee

—0.592 £ 0.149 —=0.008 £0.137 0.0151 £ 0.176

—0.369 = 0.114 0.007 £0.112

(0.011 = 0.140

Cis —0.0151 £0.142 —0.554 £ 0.159 0.002 £ 0.180 0.006 £0.110 -0.352 £ 0.112 —0.004 £ 0.103
0.006 £0.169  0.003 = 0.160 0.423 £ 0.172 0.015 £ 0.124  0.006 £ 0.120 0.215 = 0.124
E —1.280 = 0.274 —0.837 = 0.201
Hcusn 1.035 £ 0.161 0.717 £ 0.127

- The result is catastrophic. |t may be blamed to the detector effect, since the
reconstruction of tau-rest frames is very sensitive to the energy resolution.




Impact parameter effect

T Use impact parameter information

—_—

- We use the information of impact parameter b .
measurement of 7+ to “correct” the observed
energies of 7= and Z decay products

- We check whether the reconstructed 7

momenta are consistent with the measured
impact parameters.

- We construct the likelihood function and search
for the most likely 7 momenta.

E (0,) = (1+ rrf - 8,) - Eobs

¥

by = |b.| (sin™'©4 - &+ — tan' O, - E+)
Ki ({8)) = By — [By] (sin~ ©L,.({8}) - £ ({8}) — tan~" ©,({8}) - &)

(A ({oD)]z + [A,. ({5 N (AL, ({02

2 2
Tprr Ty,

Li({6})

L'({s}) = LY ({8}) + LL({})




Results

ILC FCC-ee
0.7803 = 0.195 0.019 £ 0.162  0.046 = 0.180 0.925 £+ 0.131 —-0.001 =0.122 0.023 £0.109
Cij —0.001 £0.171 0.858 £0.165  0.000 £ 0.178 0.014 = 0.1258 0968 = 0.128 —0.018 £0.121
—0.024 = 0.188 —0.010 £ 0.162 —0.678 = 0.184 —0.009 +£0.131 —0.009 £0.131 —0.928 +0.126
E 2.182 £ 0.309 — 4o 2797 £0.191 = 5,
S|p 1.626 £+ 0.187 ~ 36 1.922 4+ 0.155 ~ 560
Rensn 0.821 4+ 0.167 1.273 + 0.093 ~ 30
1
SM values: C;= 1
-1
E=3 Entanglement —> £ > |
Slpl=2 Steerablity — §[p] > 1

Repsy = \/5 =

1.414

Bell-nonlocal = Rygy > 1




Superiority of FCC-ee over ILC is due to
a better beam resolution

ILC FCC-ee
energy (GeV)| 250 240
luminosity [a,b Y 3 5
beam resolution e™ (%)| 0.18 | 0.83-10~*
beam resolution e~ (%)| 0.27 | 0.83-107*




CP measurement

- Under CP, the spin correlation matrix transforms: C f c!

 This can be used for a model-independent test of CP violation. We define:
A= (Cm - Cnr)z + (Cnﬁc - Cfcn)z + (Cﬁcr - .*‘Jc)2 >0

* Observation of A # 0 immediately confirms CP violation.

» From our simulation, we observe

.1_

0.112 + 0.085 (FCC-ee) absence of CPV

{ 0.204 +0.173  (ILC) consistent with

« This model independent bounds can be translated to the constraint on the CP-
phase o

cos20 sin20

0
L x Hp (cos +iys sin &)y, + C;= [—un 25 cos25 0 ] * A(S) = 45sin% 26
—1

0



CP measurement

- Focusing on the region near | 0| = 0, we find the 1-0 bounds:

8.9° (ILC)
0] < { 6.4° (FCC-ce)
+ Other studies:
Ao~ 11.5 (HL-LHC) [Hagiwara, Ma, Mori 2016]

Ao ~ 4.3° (ILC) [Jeans and G. W. Wilson 2018]



Summary

 High energy tests of entanglement and Bell inequality has recently attracted an
attention.

|+.=)+[—.+)

NG

. 777 pairs from H — 777~ form the EPR triplet state |¥(?) =

and maximally entangled.
« We investigated feasibility of quantum property tests @ ILC and FCC-ee.

« Quantum test requires to a precise reconstruction of the tau rest frames and IP
information is crucial to achieve this.

* Spin correlation is sensitive to CP-phase and we can measure the CP-phase as a
byproduct of the quantum property measurement.

Entanglement Steering Bell-inquality CP-phase







The explanation in QM is very different.

Although their outcomes are different in each decay, QM says the state of the particles
are exactly the same for all decays:

aN P
|T(0’0)) - |+_>Z— |—+)z

1 V2

i

up to a phase €
- Before the measurements, particles have no definite spin. Outcomes are undetermined.
(no realism)

- At the moment when Alice makes her measurement, the state collapses into:

r

+®z --- Alice finds S_[a] = + 1
|1IJ> —_—

/ \ —@z -+ Alice finds S_[a] = — 1

Alice’s Bob’s outcome is completely determined (before his measurement)
measurement and 100% anti-correlated with Alice’s

(non-local)



Bell inequality

”~

(e“-sf) = a;b;- <s."'-s!'3> = a;C; b, unit vectors: a,a’, b, b’

1
Ropsy = — <s§-sf) - <s§ — ?f) + <s§-sf> - (?f?f)

0,C;(b— b, + a/Cy (b + b’)j|

b | —

max [RCHSH] = /A4, + 4, (A, > A, > A, are 3 eigenvalues of C'C)

da,d,b,b'

Violation of Bell inequality implies

M. Fabbrichesi, R. Floreanini,
V Mtiy > 1 G. Panizzo (2021)




olete” = HZ)

unpol
240

ole’e” = HZ)| - si0aev

BR(H — 7777)
BR(t™ — 7 v;)
BR(Z — .j':.'; s 66)

* BRH—I-TT * [BRT—HTV]Q ; BRZ_’J'IJ'I'.#F:CC

240.31b

0.0632
0.109
0.766

0.1382 b



Alice . 5 (spin 0) Bob
\ 4

a (spin 1/2) f (spin 1/2)
o - > @
(1=0)

« Alice and Bob receive particles a and 3, respectively, and measure the spin z-
component of their particles. Repeat the process many times.

« Alice and Bob will find their results are completely random (+1 and -1 50-50%)

+ Nevertheless, their result is 100% anti-correlated due to the angular momentum
conservation. If Alice’s result is +1, Bon’s result is always -1 and vice versa.

Alice + + - + - - + + + - + -
Bob - - + - + + - - - + - +

sa.8f . - - - - - - - - - - -



The most natural explanation would be as follows:

- Since their result is sometimes +1 and sometimes -1, it is natural to think that the state
of a and B are different in each decay. The result look random, since we don’t know in
which sate the a and 3 particles are in each decay.

- This means we can parametrise the state of a and 3 by a set of unknown (hidden)
variables, A. For i-th decay, their states are:

a(’lg ) ’ /} (‘2'.{)

. fAe€{i, )} = Slad)l=+1, S[UA)]=—1

A} (AL} fie (i ) = Sla)]=—1, S[A)]=+1

1
PAe (i, ) =PAre (i }) = >

In this explanation:

- Particles have definite properties regardless of the measurement (realism)

- Alice’s measurement has no influence on Bob’s particle (locality)



N(&; > 0) — N(&; < 0)

Cj=4 N(E; > 0) + N(&; < 0)



