Light-flavour measurements in Run 3 and 4 with ALICE

PHENOmenal Workshop https://indico.cern.ch/event/1206467/ Building on the shoulder of giants 11/11/2022 Nicolò Jacazio (Bologna University)

https://about.me/jacazio

An evolving ALICE detector: Run 3 and 4 (and 5)

The heavy-ion experiment at the CERN LHC

- Unique PID capabilities among all LHC experiments
- Covers broad kinematic range
- Many different PID techniques
- Excellent performance in Run 1 and Run 2

Run 3+4 goals for data:

- Increase statistics
 - » 50 kHz in Pb-Pb → 13 nb⁻¹ in Run 3+4
 - » 200 pb-1

An evolving ALICE detector: Run 3 and 4 (and 5)

A near future

- Run 3 has started already since July
- Already recorded more pp collisions of Run 2!
- And performance is here!

Goal → better tracking and unchanged PID capabilities and we are getting there

Filling the gap: from small to large systems

From Run 1+2:

- At LHC energies continuous evolution is observed also when considering small systems (pp and p-Pb)
- In pp, p-Pb, Xe-Xe and Pb-Pb the charged particle multiplicity is a good scaling observable to describe particle production
- Steeper increase in particles with more stangeness content indicating that the strangeness enhancement starts at the charged-particle multiplicity reached in small systems

Filling the gap: from small to large systems

From Run 1+2:

- At LHC energies continuous evolution is observed also when considering small systems (pp and p-Pb)
- In pp, p-Pb, Xe-Xe and Pb-Pb the charged particle multiplicity is a good scaling observable to describe particle production \rightarrow does it hold true?
- Steeper increase in particles with more stangeness content indicating that the strangeness enhancement starts at the charged-particle multiplicity reached in small systems \rightarrow is it valid for extreme pp events?

With large statistics comes great multiplicity

- For pp $dN_{ch}/d\eta \approx 100$ (similar energy density as found in central Pb–Pb collisions)
- Assuming an integrated luminosity of about 200 pb⁻¹ (interaction rate 0.5 MHz):
- $N_{ev}(dN_{ch}/d\eta|_{100}) = 2.8 \times 10^4 \rightarrow close to 65\% most central Pb-Pb collisions$
- Will be able to fill the gap between small and large systems and look for rare events

Strangeness production

- Does strangeness production reach the thermal limit in high-multiplicity pp collisions?
- Measuring pp events with dN_{ch}/dη > 100 is <u>a strong need!</u>
- Going more differential is the key to give model constrains → high precision is a must!

Looking at rare pp events: flatenicity

PYTHIA 8.303 (Monash 2013), pp \sqrt{s} = 13 TeV, N_{mpi} =24, N_{ch} =325, ρ =0.58

Ortiz,, Paic arXiv:2204.13733

- More data means more differential measurements
- Going towards a very fine underlying event definition

Looking at rare pp events: flatenicity

PYTHIA 8.303 (Monash 2013), pp \sqrt{s} = 13 TeV, N_{mpi} =24, N_{ch} =325, ρ =0.58

Ortiz,, Paic arXiv:2204.13733

- More data means more differential measurements
- Going towards a very fine underlying event definition
- Flatenicity → track distribution divided into 2D cells
- Straightforward implementation into the detector acceptance

Looking at rare pp events: flatenicity

- More data means more differential measurements
- Going towards a very fine underlying event definition
- Flatenicity → track distribution divided into 2D cells
- Straightforward implementation into the detector acceptance

Looking at rare pp events: flattenicity

Light nuclei in pp collisions

- First measurement of $(anti)^4$ He and $(anti-)^3_A$ He in pp
- More insight into the particle production mechanisms

Going to AA → nuclei production projections

- Nuclei production yield in Run 3 increased by a factor 100 due to the increased statistics
- Compensating for the penalty factor of ~300 in Pb-Pb → A=3 tomorrow will be A=2 today
- Possible **first observation** of (anti-)⁴_AH and (anti-)⁴_AHe

Production of large nuclear states

Potential to discriminate between different production mechanisms

More exotic states

	Model	f ₀ (980)	N(1875)	NΞ	NΩ	$\mathrm{N}\Lambda_c$
Structure		$qq\bar{q}\bar{q}$ or $K\overline{K}$	hadron molecule	dibaryon	dibaryon	dibaryon
	q-coal.	5.4×10^{-2}	-	-	1.8×10^{-3}	1.5×10^{-3}
$\left(\frac{\mathrm{d}N}{\mathrm{d}y}\right)_{\mathrm{th}}$	h-coal.	3.2 [†]	-	-	1.6×10^{-3}	$5 imes 10^{-3}$
0	thermal	10	$3 imes 10^{-1}$	$8.7 imes 10^{-3}$	$5.7 imes 10^{-3}$	$4 imes 10^{-3}$
Decay channel		$\pi\pi$ / K $\overline{ m K}$	$\Sigma^* (\to \Lambda \pi) \mathbf{K}$	$\Xi\to\Lambda\pi$	$\Omega \to \Lambda K$	$\Lambda_c \rightarrow \pi \mathrm{Kp} + \Lambda_c \rightarrow \mathrm{K}^0_\mathrm{S}\mathrm{p}$
B.R. (%)		dominant / seen [†]	unknown (87)	99.9	67.8	6.2 + 1.58
Mass (MeV/ c^2)		990	1850 - 1920	-	-	-
Width (MeV/ c^2)		10 - 100	120 - 250	-	-	-
	q-coal.	$1.8 imes 10^8$	-	-	$6.2 imes 10^4$	$1.5 imes 10^4$
S_{raw}	h-coal.	$6.4 imes10^{6}$ †	-	-	$5.5 imes 10^4$	$5.1 imes 10^4$
	thermal	$3.6 imes10^{10}$	$5.5 imes10^7$	$6.7 imes 10^5$	$1.9 imes 10^5$	$4.1 imes 10^4$
	q-coal.	130-3.5	-	-	-	-
$\frac{S}{\sqrt{S+B}}$	h-coal.	-	-	-	-	-
v ~ 1 B	thermal	2600-70	520-360	-	-	-

arXiv:1812.06772 Yields of exotic states in 0–10% central Pb–Pb collisions at $\sqrt{s_{NN}} = 5.5 \text{ TeV}$

- Hadron identification, including topological reconstruction of weak decays, are particularly suited for these studies \rightarrow ALICE's special
- Potential for discovery of new bounds states
- Bound state properties and potentials depend on basic QCD properties

Discovery potential for charmed nuclei

- c-nuclei are on the frontier between light and heavy flavours → extension of hyper-nuclei
- ALICE in Run 4 will start to become sensitive to c-deuteron production (if it exists)
- Run 5 with ALICE 3 will give the definitive answer

Resonances constraining the hadronic phase

 Precision measurements of resonances flow will be the way to constrain the duration of the hadronic phase

Looking at hadrochemistry in detail

- What happens for the most central collisions?
 » Decreasing trend ?
- More statistics → more bins, more precise, more particle species
 - » Will resolve these behaviors
- Multiple light nuclei probes → learn from Xe-Xe
 in Run 2

Nuclear chemistry: exotic states

- Use the sensitivity of short-lived resonance yields to extract the kinetic freeze-out temperature
- Give stronger constrains with high precision measurements

Exploring the bose condensate in AA

- Low B-field data taking are foreseen → discovery potential for the condensate in AA
- Lower material budget, closer to the interaction point \rightarrow further extend momentum reach
- Lighter ions to explore initial state effect

- Anti-³He originating from Λ_b decays from dark matter annihilation might lead to an enhanced flux of anti-³He near
- earth
- Accelerator based experiments like ALICE are in the best position to determine the branching ratios of these rare decays

Antinuclei production in b-quark decays

- After LHC Run 3 & 4, we will have understood the formation mechanisms of A < 5 anti- and hypernuclei from collisions, but will only start to probe their production in b-quark decays
- Run 5 & 6 will provide the definitive answer

Summary

- Understanding the main characters
- Second act → rising action arXiv:1812.06772 and ALICE-PUBLIC-2020-005
- Run 3+4 has started → precision will be its driving force
- Third act → resolution CERN-LHCC-2022-009
- ALICE 3 will bring the definitive answers

Thank you!

And for the discussion: F. Bellini, A. Caliva', A. Kalweit, R. Lea, A. Ortiz, S. Tripathy