
Miguel Fernández Gómez — November 30, 2022

Introduction to LHCb software
and DaVinci (Run 1+2)
LHCb Starterkit 2022

Introduction
• My name is Miguel Fernández, I am a 2nd year PhD student from Santiago de

Compostela.

• During my first year, I’ve worked on (LHCb-PAPER-2022-035) and I’m also
working on and decays (in development).

• This lesson will explore some basic LHCb software terms and will (likely) be your first
introduction to creating ntuples for your analyses.

• I’ve had to create the ntuples for the above analyses from scratch…

• But that’s as far as my experience goes

• I am no expert, so we’ll try to learn together

• No question is too stupid, we are here to learn!

K0
S(L) → 4μ

η(′) → μ+μ− η(′) → μ+μ−π+π−

Materials
• We will be following these lessons from the “First Analysis Steps” section of the Starterkit page (https://lhcb.github.io/starterkit-

lessons/first-analysis-steps/README.html):

• An introduction to LHCb Software

• Running a minimal DaVinci job locally

• Fun with LoKi functors

• TupleTools and branches

• How do I use DecayTreeFitter?

• It’s a lot!

• I’ve also reused and repurposed some of the content there, as well as slightly expanded on it. This is where you can find my
repository, with the lessons and all the code:

https://gitlab.cern.ch/femiguel/davinci-lessons

• The lessons there and the code, as well as this presentation, go well beyond today’s lesson and are intended as supplementary
material

• Let’s start!

https://lhcb.github.io/starterkit-lessons/first-analysis-steps/README.html
https://lhcb.github.io/starterkit-lessons/first-analysis-steps/README.html
https://gitlab.cern.ch/femiguel/davinci-lessons

LHCb Software
• Running a particle physics detector involves a lot of challenges

• Focus today: software-based challenges

• Gaudi framework was designed by LHCb to address many of them

• It allows to analyze events one by one, instead of holding all of them in
memory at once → EventLoop

• It organizes the event information so that it is easily accessible → Transient
Event Store

• We can also apply algorithms and tools to perform certain tasks, apply filters,
perform calculations, and more → Option files

Running LHCb software
• One of the main projects based on Gaudi used by LHCb is DaVinci, which is

used for ntuple-making, for instance (our goal today).

• On a practical matter, DaVinci is essentially a collection of tools and
algorithms inside of an environment

• To start an environment in LHCb software, we use the key term lb-run

• We will be using version v46r4 of DaVinci

• To initialise this, we simply type:

$ lb-run DaVinci/v46r4 gaudirun.pyNOTE: This symbol is not
to be typed. It is just to

indicate that we are
running this command on

our terminal

Running DaVinci
• gaudirun.py is a script that sets up Gaudi’s EventLoop

• So far, nothing else has been done, as we haven’t specified any algorithms to run.

• This is done through python modules called option files. Assume we create an options file named
options1.py with some algorithms to run. To execute it, we simply type on our terminal:

$ lb-run DaVinci/v46r4 gaudirun.py options1.py

• We will be doing this in a few minutes

• To avoid typing such a long command every time, we can also set ourselves in the DaVinci
environment by typing:

$ lb-run DaVinci/v46r4 $SHELL

• To run options1.py now, we simply type:

$ gaudirun.py options1.py

Which DaVinci version should we run?
• The formal answer is to use the last version available. In our case, this is

v46r4.

• Versions above v50 are Run 3-oriented, while versions below v50 are Run
1&2-oriented

• My personal preference is to use the DaVinci version used for the stripping

• We can access this, for instance, by scrolling down through the Python file we
downloaded from the bookkeeping, and reading the commented parts right
before the LFN paths.

• Nonetheless, it is crucial to be consistent with the DaVinci version throughout
the analysis.

Can we get to it already?
• Here we are! We are now set to for running our first DaVinci job

• We will be studying the decay , using the Monte Carlo DST file we downloaded in
the previous lesson

• We want to create a ROOT file where we store the events inside this DST that pass our stripping line,
D2hhPromptDst2D2KKLine

• A stripping line is a collection of filters and selections that allow us to narrow down our decay search

• We now create a new file named ntuple_options.py and write the following:

D⋆+ → D0(→ K+K−)π+

Configuring DaVinci
• Before we run the code, we need to specify some DaVinci attributes like the

year of release, MC tags, etc. We include:

Configuring DaVinci (2)
• UserAlgorithms indicates the algorithm to be run over the events.

• InputType should be 'DST' for DST files (and 'MDST' for microDST).

• TupleFile is the name of the output ROOT file, where the TTree will be stored.

• PrintFreq is the frequency of events with which DaVinci will print the status.

• DataType is the year of data-taking this corresponds to.

• Simulation is either True when dealing with Monte Carlo files, or False when using LHCb-taken data.

• Lumi is set to True if we want to store information on the integrated luminosity.

• EvtMax is the number of events to run over, where -1 indicates to run over all events.

• CondDBtag and DDDBtag are the exact detector conditions that the Monte Carlo was generated
with. It contains, for instance, information on the magnet polarity.

Running the code
• Finally, we just need to indicate DaVinci what’s the data we’re running

• We give it the path to the DST file we downloaded. Assuming it’s on the same
directory as ntuple_options.py, we simply type:

• We can now run the file:

$ lb-run DaVinci/v46r4 gaudirun.py ntuple_options.py

Quick note on how to obtain database tags
• There are several ways to do this. Here is a bit of a tedious version that is

explained in the Starterkit lessons

• We get the Production ID from the bookkeeping location. In the case of  
/lhcb/MC/2016/ALLSTREAMS.DST/
00070793/0000/00070793_00000002_7.AllStreams.dst,  
the production ID is 00070793.

• We go to the transformation monitor and insert this number in the field
ProductionID(s)

• Right click -> Show request -> Right click -> View

• Inside “Step 1” we get both tags

An alternate way to obtain the tags
• We can also read the tags directly from the downloaded DST file.

• However, there is even a way to access them without downloading the DST
files.

• In the terminal, outside of the DaVinci environment, simply type:

$ lb-dirac dirac-bookkeeping-decays-path <eventtype>

• where <eventtype> is the number we used yesterday to find our DST inside
the bookkeeping (more on what it means in today’s session). In the case of
our decay, it is 27163002

Getting more out of our DST
• We have now run our first DaVinci job and created a very basic ROOT output file.

• The question is now how can we get more information out of it, fully exploring DaVinci’s
potential.

• We currently only have information on the mother particle.

• For any other particle we want information on, we add a ^ symbol in the Decay parameter:

• We can also customize the names of the branches through the addBranches function.

Let’s take a break!

What if we want to add even more info?
• The key from now on is how can we make our data files more complete.

• TupleTools provide us with ways to add more information to our ntuples

• They are a collection of algorithms that select specific pieces of information

• Examples:

• TupleToolKinematic fills the kinematic information of the decay

• TupleToolPid stores DLL and PID information of the particle

Adding TupleTools
• There are different ways of adding TupleTools into our DecayTreeTuple object

• Simplest way:

• To add more configuration:

• Alternative way:

• Note: TupleToolProperTime needs the mother particle to come from the PV

• We can ensure that happens using a Configurable named CheckPV, or
through the use of a LoKi__VoidFilter object.

How to require PV
• Easy way out:

• A more sophisticated approach:

• Either object created needs to then be added to the UserAlgorithms
before the dtt object.

• To make sure only the events that come from the PV will then be applied the
DecayTreeTuple algorithms, we can use a GaudiSequencer.

LoKi functors
• LoKi functors are to DSTs what branches are to ROOT files

• They help us interact with the DST and apply cuts before creating ROOT files

• They are used, for instance, when writing stripping lines

• We can implement them easily into our DaVinci scripts to create new variables

Monte Carlo Decay Tree Tuples
• We’ve now seen the basics of how to access and treat the data that passes our stripping.

• But in Monte Carlo, it’s often useful to also know how many events we have in total, for
instance, to compute efficiencies.

• For this, we need to go back to the very basics, even before implementing the detector and
the reconstruction.

• We use MC DecayTreeTuples, where we are accessing truth-level variables (variables that did
not go through reconstruction, and instead were randomly generated by Pythia8, for
instance).

A good place to either stop or
take another break!

Catalogs
• When working with DaVinci, in general, there is no need to download any DST files

locally, as we can always access them directly through the grid

• To do this, we can use catalogs

• Let’s create a new directory called catalogs, where we move our
*ALLSTREAMS.DST.py file, and create a copy of it with a different name. For
instance, testcatalog.py

• Opening testcatalog.py, let’s remove all LFNs except for a couple, that we will
use for testing

• We now run the following command:

$ lb-dirac dirac-bookkeeping-genXMLCatalog --Options=testcatalog.py
--Catalog=myCatalog.xml

Accessing catalogs from DaVinci
• Going back to our options file now, we can substitute the IOHelper lines that

call to our DST file by the following:

from Gaudi.Configuration import FileCatalog

FileCatalog().Catalogs = [“xmlcatalog_file:/catalogs/mycatalog.xml”]

