Single-arm spectrometer instrumented in the forward ($2 < \eta < 5$) region, designed to study decays of beauty and charm hadrons
Studies of heavy quark hadrons can be excellent probes to search for NP and high energy scales, sources of CPV

LHCb physics program complementary to ATLAS, CMS, Belle-II

Requirements:

- Precision primary and secondary vertex reconstruction, efficient tracking
- Excellent particle identification
- Efficient trigger
The LHCb Detector

Tracking system (Runs 1 and 2):

- **Vertex Locator (VELO)** for precision reconstruction + separation of primary, secondary vertices
- **Silicon Tracker (ST)**, consisting of:
 - Four-layer silicon strip **Tracker Turicensis (TT)** upstream of magnet
 - Silicon strip **Inner Tracker (IT)** in the innermost region of tracking stations (T1-T3) downstream of magnet
Calorimetry

- Located ~12.5 m from the interaction point
- Four sub-detectors: SPD, PS, ECAL, HCAL
- Provides L0 (hardware-based) trigger information, energy measurements for electrons/neutrals, and PID information
Particle Identification

- Ring Imaging Cherenkov detectors for pion, kaon identification
- Muon Spectrometer: Five stations of multi-wire proportional chambers, GEM chambers in innermost part of M1
Why Upgrade?

Many LHCb results currently limited by statistical uncertainties

<table>
<thead>
<tr>
<th>Observable</th>
<th>Current LHCb</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_K</td>
<td>$0.745 \pm 0.090 \pm 0.036$</td>
</tr>
<tr>
<td>$R_{K^{*0}}$</td>
<td>$0.69 \pm 0.11 \pm 0.05$</td>
</tr>
</tbody>
</table>

CKM tests

- γ, with $B_0^0 \to D_s^+ K^-$
 - γ, all modes
 - $\sin 2\beta$, with $B_0^0 \to J/\psi K_S^0$
 - ϕ_s, with $B_0^0 \to J/\psi \phi$
 - ϕ_s, with $B_0^0 \to D_s^+ D_s^-$
 - ϕ_s^{88}, with $B_0^0 \to \phi \phi$
 - a_{sl}
 - $|V_{ub}|/|V_{cb}|$
 - $B_0^0, B^0 \to \mu^+ \mu^-$
 - $B(B_0^0 \to \mu^+ \mu^-)/B(B_0^0 \to \mu^+ \mu^-)$
 - $\tau_{B_0^0 \to \mu^+ \mu^-}$
 - $S_{\mu \mu}$
 - $b \to c \ell^- \bar{\nu}_\ell$ LUV studies
 - $R(D^*)$
 - $R(J/\psi)$

Charm

- $\Delta A_{CP}(K K - \pi \pi)$
- $A_\Gamma \ (\approx x \sin \phi)$
- $x \sin \phi$ from $D^0 \to K^+ \pi^-$

<table>
<thead>
<tr>
<th>$\sigma(\text{stat})/\sigma(\text{sys})$</th>
<th>Largest source of systematic</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5</td>
<td>Mass shape & trigger eff</td>
</tr>
<tr>
<td>2.2</td>
<td>MC correction & residual bkgd</td>
</tr>
<tr>
<td>3</td>
<td>Λ_{c} time res, tagging, det asymmetry</td>
</tr>
<tr>
<td>8</td>
<td>Decay time: bias and efficiency</td>
</tr>
<tr>
<td>8</td>
<td>Angular efficiency</td>
</tr>
<tr>
<td>8</td>
<td>Decay time resolution</td>
</tr>
<tr>
<td>5</td>
<td>Acceptance (angular and time)</td>
</tr>
<tr>
<td>1.3</td>
<td>Track reco asymmetry</td>
</tr>
<tr>
<td>0.5</td>
<td>External BR(Λ_c)</td>
</tr>
<tr>
<td>6</td>
<td>f_d/f_s</td>
</tr>
<tr>
<td>9</td>
<td>Decay time acceptance</td>
</tr>
<tr>
<td>1</td>
<td>MC sample size</td>
</tr>
<tr>
<td>1</td>
<td>$F(B_c \to J/\psi)$ form factor</td>
</tr>
<tr>
<td>2.7</td>
<td>Mass model</td>
</tr>
<tr>
<td>2.8</td>
<td>Contribution from sec $b \to D^*X$ decays</td>
</tr>
<tr>
<td>2</td>
<td>Contribution from sec $b \to D^*X$ decays</td>
</tr>
</tbody>
</table>
Primary challenges after LS2:

- Take advantage of higher luminosity (current L0 hardware trigger limits data-taking rate)
- Sub-detectors will need to handle increased occupancy (factor 5 increase in number of interactions per bunch crossing)
- Radiation damage also a concern
LHCb Upgrade I

LHCb 2015 Trigger Diagram

L0 Hardware Trigger: 1 MHz readout, high E_T/P_T signatures

- 450 kHz h^\pm
- 400 kHz $\mu/\mu\mu$
- 150 kHz e/γ

Software High Level Trigger

- Partial event reconstruction, select displaced tracks/vertices and dimuons
- Buffer events to disk, perform online detector calibration and alignment
- Full offline-like event selection, mixture of inclusive and exclusive triggers

40 MHz bunch crossing rate

12.5 kHz (0.6 GB/s) to storage

LHCb Upgrade Trigger Diagram

30 MHz inelastic event rate (full rate event building)

Software High Level Trigger

- Full event reconstruction, inclusive and exclusive kinematic/geometric selections
- Buffer events to disk, perform online detector calibration and alignment
- Add offline precision particle identification and track quality information to selections
- Output full event information for inclusive triggers, trigger candidates and related primary vertices for exclusive triggers

2-5 GB/s to storage

CERN-LHCC-2012-007
LHCb Upgrade I

- Software-only trigger
- New pixel VELO
- New tracking stations
- New RICH PMTs + upgraded electronics
- Upgraded calo FE electronics, remove SPD/PS
- Upgraded muon FE electronics, remove M1

LHCb-TDR-12
LHCb Upgrade I

Upgraded LHCb Detector

Detector Channels

R/O Electronics

To be UPGRADED
To be kept

DAQ

New RICH PMTs + upgraded electronics

Software-only trigger
Upgraded calorimeter FE electronics,
Upgraded muon...

CERN-LHCC-2012-007
VELO challenges in Run 3:

- **Retain high vertex and track reconstruction efficiency** with ~ 5x increase in interactions per bunch crossing
- **Increased radiation** (order of magnitude higher than current doses), highly non-uniform

- Use silicon hybrid pixels
- 52 modules, two retractable halves
 - Innermost sections ~5.1 mm from beam pipe
 - 4 silicon sensors per module, 55 μm x 55 μm
Vertex Locator

- Sensor+readout electronics mounted on cooling substrate
 - Sensor temperature maintained at -20 C, novel technique of evaporated CO\textsubscript{2} cooling in substrate micro-channels
 - Minimal material within acceptance

- Pixel VELO ASIC front-end readout chip
 - 3 chips bump-bonded to each sensor
 - Triggerless binary readout
 - Up to 800 MHits/s/ASIC

- VELO operates in secondary vacuum, separated from primary vacuum by 1.1 m long thin RF foil
 - New foil thinned to 250 μm
 - Withstands pressure variations of 10 mbar
UPSTREAM TRACKER

- Four-layer silicon strip detector
 - Finer granularity than TT, innermost sensors closer to beam pipe
 - Inner layers tilted by a stereo angle (±5%)
- Four different types of sensors
- Mounted to lightweight staves (10 cm wide, 1.6 m long)
- Novel readout chip (SALT ASIC)
SCINTILLATING FIBER TRACKER

- 3 x 4 layers of scintillating fiber mats
 - Each mat with 6 layers of fibres
 - 8 mats assembled into a module
 - 11,000 km of fibres in total
 - Coverage up to 3m from the beam pipe

- Fibres manufactured by Kuraray (Japan)
 - Double-clad plastic scintillating fibre
 - Core: polystyrene base + activator + wavelength shifting dye
 - Attenuation length ~ 3.5m, light emissions peak ~ 450 nm
Scintillating Fiber Tracker

- Fibre readout provided by silicon photo-multipliers
 - 128-channel SiPM arrays, channel size 250 um
 - Cooled to -40°C to minimise dark count rate after high irradiation
 - Photon detection efficiency ~ 45%
 - SiPM signal processed by custom 64-channel PACIFIC ASIC chip
 - Zero suppression + clustering on FPGAs (clusterisation boards)
RICH Detectors

- New glass flat mirrors for RICH1 (better photon yield)

 - Focal plane, optics modified to increase size of Cherenkov rings

- Photo-detectors to be upgraded

 - Two types of multi-anode photomultiplier tubes (MaPMTs) with finer granularity

- Readout electronics updated to allow for data-taking at 40 MHz

- Single photon angular resolution improved by 50% (RICH1), 20% (RICH2)
Calorimetry + Muon Detectors

- Run 1-2 calorimeters will be kept for Run 3
 - Front-end electronics rebuilt
 - SPD/PS removed
- PMT gain reduced by a factor of 5 to reduce degradation
- To compensate, the front-end gain is increased by the same factor
 - Custom low-noise FE ASIC developed
- Reconstruction improved for higher occupancy environment
- Muon detector electronics also upgraded during LS2
 - First GEM layer to be removed
 - 36 new PAD chambers to be installed in inner region
New SMOG2 system installed to inject various gas species in the LHCb IP
- Fixed Target physics at the LHC collider: in // with pp data taking
- Gas cell attached to VELO, displaced p-gas IP for easy distinction from pp data

Physics program spans:
- anti-proton production
- Central exclusive production
- $X(3872)/\psi(2S)$
- $\psi(2S) / J/\psi$
- Strangeness production
- $\Lambda c \rightarrow pK\pi$

+ LHCb participation in Heavy Ion runs (PbPb and pPb data taking)
Upgrade I Assembly and Installation Highlights
Upgrade I Assembly and Installation Highlights
Real-Time Data Processing

- Software-only trigger in the upgrade
- Must fully process events at 30 MHz
 - Information needed from all sub-detectors at initial trigger stage
- Events stored in buffer, for online alignment, calibration
- Will be able to trigger on signatures with large impact parameters, high p_T
- Event sized reduced to write to disk at 2-5 Gb/s

- Order of magnitude increase in data to storage, without a corresponding change in offline computing resources
- Move towards Turbo model in Run 3
 - Implemented for a few channels in Run 2
 - Save only HLT reconstructed output to offline (no RAW data)
Remove the first-level hardware trigger

- Accept all LHC bunch crossing: trigger-less Front-End electronics!
- Back-End electronics on surface in data center
- ~19000 long distance optical fibers (99.75% yield)
- Common Back-End boards (PCIe40)
 ✓ Large FPGA and optical links (48 x 10 Gbps)
- Total effective bandwidth of 32 Tbps
HLT1 With GPUs

3 GPUs + PCIe40 card / EB server

Allen project for fully software trigger on GPUs
- Implemented on C++, CUDA and python
- Running also for CPU and HIP (AMD, experimental)
- It can run standalone
- Continuously improving

HLT1 runs at visible collision rate
- ~30 MHz
- 60 kHz per GPU
LHCb Online Monitoring

Complex system that aggregates information from many different sources

- Provide output to the LHCb control room, to the experts, to the run control
- Fundamental in automatizing the LHCb readout system and control
Data-taking with the Upgrade LHCb Detector
Data-taking in Run 3

(Good) data taking in LHCb relies on the contributions of the entire Collaboration

- Central shifters roles have always played an important role in our success
 - It also includes the so-called sub-detector piquet getting calls 24/7

- They rely on a “volunteering” paradigm
 - No formal quota to be reached -> just accounting and monitoring
 - Small number of shifts required per year -> no need to be an expert, system highly automatized
 - Quite successful approach: in Run1 and Run2 we had ~450 unique shifters and piquet trained

Taking a central shift is the best way to take active part in our physics successes regardless of what your competence / work domain is!

It is also the best way to get involved directly!
The LHCb Control Room

- LHCb running conditions (luminosity)
- FARM and EB monitoring
- Speakers for voice messages
- LHCb-LHC red phone
- Alarm panel
- LHC and LHCb Vistars
- Beam, background, timing
- Main control panel
- Deferred processing
- Data presenter
- SL
- DM

Inset: SLIMOS and LEVEL 3

28
Shift Leader (SL): responsible for safety (SLIMOS), supervision of activities, supervision of control system and experiment conditions, contact with experts and piquets, contact with EICs

- Shift Leader must be physically in the CR to manage the access system, guide the firemen if needed, access with piquet if needed, push “real buttons” if needed, write information to the logbook, makes sure information are propagated at shift change
- Shift Leader is a role with more “responsibility” but no technical knowledge required

Data Manager (DM): responsible for monitoring the quality of data, replaces SL if needed

- Data Manager must be physically in CR due to the “2 people rule” at CERN
- Data Manager has practically no “direct responsibility”: excellent role for early PhD or newcomer

✓ SL and DM have to follow a one half-day training + one shadow shift (if 1st shift ever)
 ○ Training can be remote + extensive Twiki with instructions on how to operate LHCb

✓ SL and DM are generally non-experts LHCb members
 ○ SL are required to “know more” about LHCb

✓ SL and DM shifts are self-assignable, with schedule validated and supervised by Run Coordinator(s)
 ○ On average, asks to have ~3 shifts / year / author_trained
 ○ Gaps normally taken by people based at CERN or experts or Run Coordinators
 ○ Every day, 3 shifts/day, 8h/shift (6.30-14.30 / 14.30-22.30 / 22.30-6.30)
LHCb On-call Piquets

Run Chief(s): Assists the Run Coordinator(s) in the daily operations of LHCb by running the Run Meeting, go to LHC morning meeting and have executive decision power (with RCoord).

- Normally a “senior” (experience with LHCb commissioning/operations) individual, expert in LHCb
- Can be 1 or 2 people at the same time, for one or two weeks according to availability
 - have to be available 24/7 for the period in charge
 - follow a few hour training with Run Coordinator to be “enabled” to the role
- At the beginning of Run3, the Run Chiefs will be taken by the pool of commissioning coordinators and commissioning “activists” at the pit
 - over time, plan to increase the pull of Run Chiefs as more people will rotate

Sub-system piquet: in charge for about one week, first contact person for a specific sub-system, reports at Run Meeting and at specific sub-system meetings

- Direct line of contact between Shift Leader and sub-systems during data taking
- Have to be available 24/7: answer the phone at any time, but does not need to be physically in the CR, but should be in the “region” to access if needed
- Entirely managed by sub-system coordinators (training, assignment and supervision included).
 - Generally people taken by the pool of institutes collaborating to a sub-system
Data Quality, Computing and Simulation Shifter: new role in view of Run3, merge the piquet role of Data Quality Piquet, Computing Shifter and Simulation Shifter

- Improve communication, central shifter from Collaboration, meaningful shifter role
 - Allow acquire knowledge on all aspects of LHCb offline data processing

- Three tasks, similar in modus operandi, different in scope
 1. Monitor the quality of the data through the Data Quality monitoring tools
 - “look at DQ plots” and report/flag any anomaly via JIRA tasks
 2. Monitor production issues in the computing domain
 - Monitor WLCG tools and report/flag any anomalies via dedicated tracking system
 3. Monitor simulation Quality of MC productions
 - Verify SimDQ plots and report/flag any anomaly via JIRA to MC experts and relevant PA WG
 - Check LHCbPR plots and report/flag discrepancies via JIRA to MC developers

- Different needs throughout the year
 - DQ task mostly needed during data taking or around data taking periods
 - Computing and simulation tasks needed all year long

- Day shift, 8 h/day, ~8.30am - ~5.30pm (can be remote)

- Assignment of shifts done on a Self-Assignment basis
Hierarchical control system - can reach any device in the experiment from two single panels

→ Enables high level of automation

Legend:

- Control Unit
- Device Unit
The LHCb control system (ECS) is highly automatized

- HV/LV panel (called BigBrother) checks the LHC state, picks a corresponding ACTIVITY, and automatically adjusts HV/LV states

- The RunControls AutoPilot follows the procedure to start a run based on the ACTIVITY
 1. ACTIVITY loads a set of electronics, HLT recipes, configure all devices and checks they are ok, and then starts taking data
 2. Produce alarms, voices, messages, automatic entry to logbook, SMS
LHCb and the LHC

High interconnectivity between the accelerator and experiments

- Protection through fast beam extraction
- Automating and securing operational procedure
- Readout Control and Event Management

LHC machine states
LHC machine conditions
Bunch structure
Beam characteristics
> 10000 parameters

Safety conditions
SW Interlocks
Magnet and radiation doses

LHC control room
Webpages
LHC operations
Tuning of machine

LHCb DataBases

Processed data
LHCb control room
Alarms!

Global centralized operations
HV/LV, LHCb states
Timing correction
Readout control

Information exchange
Servers

LHC logging DataBases

Beam and background monitoring
Timing monitoring
Experimental conditions
- Trigger rates
- Online Luminosity
- Bunch-by-bunch measurements
- Beam gas
> 10000 parameters
LUMINOSITY

Measurement of how many collisions we get per second per cm²

\[L \approx \frac{N_b N_1 N_2 f_{bc}}{4\pi \sigma_x \sigma_y} \approx \frac{N_b N_1 N_2 f_{bc}}{4\pi \varepsilon \beta^*} \] [cm⁻² s⁻¹]

Nominal LHC luminosity is \(\sim 1-2 \times 10^{34} \) cm⁻²s⁻¹ with 25ns beams
- ATLAS and CMS are high-lumi experiment, reaching up to \(1-2 \times 10^{34} \) cm⁻²s⁻¹
- LHCb is a mid-lumi experiment, running in the range of \(2 \times 10^{33} \) cm⁻²s⁻¹
- ALICE is a low-lumi experiment, running in the range \(10^{29} – 10^{31} \) cm⁻²s⁻¹

LHCb lumi constantly leveled

ATLAS and CMS decay exponentially
Mu, Pileup and Nu

Instantaneous luminosity depends on beams population, given constant beam sizes

✓ better to have live quantities which are in terms of rate -> direct observable

\[\mu (\text{mu}) = \text{average number of visible pp interaction per bunch crossing} \]

-> This is the only thing we can directly measure at the pit, so everything should be considered in terms of \(\mu \)

\[\mu = -\ln(P(0)) \] calculated from the number of empty events in a counter

\[L_{tot_inst} = \frac{\mu \ast N_b \ast f}{\sigma_{xsection_LOCALO}} \]

\(\mu = 1.1 \) with \(N_{\text{bunches}} = 2335 \) and \(L \sim 4.5 \times 10^{32} \text{ cm}^{-2} \text{ s}^{-1} \)

pileup = average number of pp interaction in visible events

-> pileup is the zero suppressed mean of the Poissonian distribution for visible events

\[\text{pileup} = \frac{\mu}{1 - e^{-\mu}} \] -> pileup = 1.65 for \(\mu = 1.1 \)

\(\nu (\text{nu}) = \text{average number of pp interaction per bunch crossing} \)

-> only useful if to be compared with MC
Luminosity Levelling

In LHCb, we optimize data taking to obtain homogenous dataset

→ Choose value of μ to be constant independently of bunch population and number of bunches

→ Level the luminosity to whichever value gives $\mu = 1.1$

✓ Done by separating the beams in the plane perpendicular (V) to the crossing angle plane (H) until beams are “head-on” (i.e. no more V separation possible)

✓ Real-time application in the LHCb control room, controlled by the central LHCb control system that exchange life information with the LHC and “coordinate” the beams separation -> completely automated!

![Graph showing luminosity dependence on beam separation](image)
Operations in 2022

First stable beams in Run 3! July 5, 2022
The LHCb experiment successfully completed its first decade of data taking in the LHC Run1 and Run2
- Physics program extended well beyond beauty and charm sectors

LHCb expects to collect 50 fb$^{-1}$ of data during Runs 3-4
- Higher interactions per bunch crossing, luminosity pose challenges for detectors and TDAQ system
- New detectors and readout electronics to maintain performance at higher luminosities and collecting more data
- First year of commissioning with LHC beam (2022) completed
- Looking forward to having you join us in taking data efficiently in Run 3!