FROM COLLISIONS TO PHYSICS
- And how to get to publication -

Janina Nicolini
Goal of the lesson

- DST vs mDST files
- Online selection
- Analysis flow
- Filtering
- Fullstreams vs Streams
- Trigger stages
- Generator level simulation
- Dataflow
- Restripping
- Reconstruction level simulation
- Run 1 vs Run2 dataflow
- Prescaling
- Stripping (campaign)
- Offline selection
- Analysis preservation
Goal of the lesson

Will it be an awful lot of information? Yes, but lots of links on the slides.
Software designed to make common analyses as easy as possible. So how and what do we do in analyses?
How we perform analyses

We usually measure:

- Production
- Decay properties

Of heavy flavour hadrons

→ short lifetime → what can we do?
How we perform analyses

We usually measure:

- Production
- Decay properties

Of heavy flavour hadrons

→ short lifetime → what can we do?

Use "stable" particles:

- Protons p/\bar{p}
- Photons γ
- Electrons e^\pm
- Deuterons
- Charged pions π^\pm
- Charged kaons K^\pm
- Muons μ^\pm
First step reconstruction of properties.
Not single particle, but all charged tracks at the same time
How we perform analyses

First step reconstruction of properties.

Not single particle, but all charged tracks at the same time

(Beam 1) (Several) primary vertices
→ where protons collide
→ large number of tracks intersecting
Recap: The LHCb detector

Single-arm forward spectrometer → boost of $b\bar{b}$ and $c\bar{c}$ pairs

* replaced or removed during Upgrade for Run 3
Recap: The LHCb detector

- Tracking system
 → Momentum reconstruction
Recap: The LHCb detector

Calorimeter
→ Energy reconstruction
Recap: The LHCb detector

RICH and muon detector
→ particle identification
How we perform analyses

Building decay candidates

Difficulties we encounter

• Contributions from detector effects
• "Ghost" tracks
 → combination of random hits
• Typical hundreds of tracks
 → statistical analysis of events
How we perform analyses

Building decay candidates

Reconstructing a $J/\psi \rightarrow \mu^+\mu^-$ decay

• Select suitable tracks created by reconstruction
• Create pairs of oppositely-charged tracks
• Fit each pair under the hypothesis they originate from a common point in space
How we perform analyses

Building decay candidates

Reconstructing a $J/\psi \rightarrow \mu^+ \mu^-$ decay

- Select suitable tracks created by reconstruction
- Create pairs of oppositely-charged tracks
- Fit each pair under the hypothesis they originate from a common point in space

High momentum cut

Use probability of true muon → called ParticleIDentification variable
How we perform analyses

Building decay candidates

Reconstructing a $J/\psi \rightarrow \mu^+ \mu^-$ decay

- Select suitable tracks created by reconstruction
- Create pairs of oppositely-charged tracks
- Fit each pair under the hypothesis the originate from a common point in space

High momentum cut

Use probability of true muon called ParticleIDentification variable

Distance of closest approach between two muons not exceed max value

Invariant mass required to be close to J/ψ
How we perform analyses

Building decay candidates

- Select suitable tracks created by reconstruction
- Create pairs of oppositely-charged tracks
- Fit each pair under the hypothesis the originate from a common point in space

Reconstructing a $J/\psi \rightarrow \mu^+ \mu^-$ decay

- Use probability of true muon called ParticleIDentification variable
- Distance of closest approach between two muons not exceed max value
- Invariant mass required to be close to J/ψ

DecayTreeFitter tool allows to perform fit in software

χ^2 of fit can be used in selection
Creating J/ψ candidate from muon four-momenta

Reconstructing a $J/\psi \rightarrow \mu^+ \mu^-$ decay

- Select suitable tracks created by reconstruction
- Create pairs of oppositely-charged tracks
- Fit each pair under the hypothesis the originate from a common point in space
How do we decide what to save?

The LHC can provide a bunch crossing every 25ns.

Data rate is 40MHz, but:

- FPGA readout max. 1MHz
- Run 1: rate to storage max. 5kHz
- Run 2: rate to storage max. 12.5kHz

So we cannot save 1TB/s.
How do we decide what to save?

First a hardware trigger stage called L0.
How do we decide what to save?

First a **hardware trigger stage called L0.**

Mainly two detector types firing:

- Hits in the muon stations
- Energy deposit in the ECAL and HCAL

40 MHz bunch crossing rate

L0 Hardware Trigger: 1 MHz readout, high E_T/P_T signatures

- 450 kHz h^{\pm}
- 400 kHz $\mu/\mu\mu$
- 150 kHz e/γ
Collision dataflow during Run 1

Second step of the online reconstruction.

Next software stage called High Level Trigger

- HLT1: Adding tracking information
- HLT2: Adding RICH information
- Both run in Moore framework
Collision dataflow during Run 1

Online reconstruction done, but...

Fast trigger lead to worse resolution.
What do we do?
Collision dataflow during Run 1

The offline reconstruction

- Tracks,
- Clusters,…
- Run in Brunel framework
Collision dataflow during Run 1

And storage of the data to tape

Raw banks of all the subdetectors are saved in FULLSTREAM
→ no further selection
→ Information stored in DST Files
And storage of the data to tape

Collision dataflow during Run 1

After reconstruction huge DST files. What do we do?
Collision dataflow during Run 1

Reducing the file sizes

Selecting further with **stripping lines**

- Select certain decays based on signatures
- **Exclusive**: only one decay
- **Inclusive**: several decays combined
- Special lines: minimum-bias, BKG studies, …
Collision dataflow during Run 1

Reducing the file sizes

Special stripping lines

- Minimum-bias, BKG study
- Have very little selection → high rates
- Prescaling: save randomly only 0.1 [0.01] of the events
- Never use for other lines! Signal events are also lost!
Selecting further with stripping lines

- Several stripping lines organised in streams
- DST or mDST files (150 vs 50 kB/event)
- mDST only store tracks that passed selection, not whole event
- Run in DaVinci framework
Restripping of data

- Allows to access new ideas with new lines
- Incremental restripping: only new/updated lines
- Full restripping: only done if bugs fixed e.g. in reco
What about new ideas?

Stripping campaigns are identified by SXrYpZ:

- X: Full restripping campaign
- Y: data taking Year
- Z: incremental restripping
Collision dataflow during Run 1

And finally:

- Creating Ntuple with DaVinci (see Wednesday)
- Ntuples are saved in ROOT files
- Your personal analysis

Probably most of your analysis work:

- Creating Ntuple with DaVinci (see Wednesday)
- Ntuples are saved in ROOT files
- Your personal analysis
Collision data Flow during Run1

And finally:

Probably most of your analysis work:

- Creating Ntuple with DaVinci (see Wednesday)
- Ntuples are saved in ROOT files
- Your personal analysis

Lesson for DaVinci on Wednesday
What has changed?

- Upgrade of the event filter farm (EFF):
 - HLT execution on EFF
 - Improved hardware and software, automated calibration
 - Full reconstruction now on HLT2!
 - No offline reconstruction needed
Collision dataflow during Run 2

Some details about the time for high level trigger

Next software stage called High Level Trigger

- HLT1: ms per event
- Alignment and calibration on 10Pb of buffer: mins/hours
- HLT2: full reconstruction takes hours
Collision dataflow during Run 2

Opens the option to bypass with Turbo

Still more events to store:

- **Turbo stream**: Saves only triggered tracks, rest of the event deleted
- **Cannot** be re-reconstructed
- For available lines ask trigger liaisons

Diagram showing the flow of data from Trigger to Reconstruction, Stripping, Storage, and Analysis, with Ntuple making at the end.
Collision data Flow during Run2

Opens the option to bypass with Turbo

Three different Turbo definitions:

- **Turbo**: Saves only triggered tracks
- **Turbo++**: additional track information
- **TurboSB**: Free selection of additional information to save
Run 1

- HLT not accurate enough
- Offline Reconstruction always needed
- Maximum speed to disk 5kHz
Summary collision data flow

<table>
<thead>
<tr>
<th>Run 1</th>
<th>Run 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>• HLT not accurate enough</td>
<td>• Higher data rate</td>
</tr>
<tr>
<td>• Offline Reconstruction always needed</td>
<td>• HLT same accuracy without offline reconstruction</td>
</tr>
<tr>
<td>• Maximum speed to disk 5kHz</td>
<td>• Turbo Stream as bypass option</td>
</tr>
<tr>
<td></td>
<td>• Maximum speed to disk 12.5kHz</td>
</tr>
</tbody>
</table>
Run 1
- HLT not accurate enough
- Offline Reconstruction always needed
- Maximum speed to disk 5kHz

Run 2
- Higher data rate
- HLT same accuracy without offline reconstruction
- Maximum speed to disk 12.5kHz

Dataflow in Run 3 and related topics on Thursday
Simulation dataflow

But what about simulation?

Creating particle simulation:

- **Generation** of the hard process e.g. Pythia
- Decay processed with **DecFiles** in EvtGen
- Propagation through **detector**: Geant4
- All executed in Gauss framework
But what about simulation?

Creating particle simulation:

- **Generation** of the hard process e.g. Pythia
- **Decay** processed with [DecFiles](#) in EvtGen
- **Propagation** through detector: Geant4
- All executed in Gauss framework
After generating the particle simulation:

- Digitalisation of detector response with **Boole**
- Simulation can be processed like data
- Access to efficiencies

More details on the [starterkit webpage](#)
After generating the particle simulation:

- Digitalisation of detector response with Boole
- Simulation can be processed like data
- Access to efficiencies

Reconstruction level MC

More details on the starterkit webpage

How to simulation and MC request on Wednesday
First accessing `Ntuples`

Step 1

- Testing `scripts`
- Run locally
- [Starterkit lesson](#)
- about it
First accessing **Ntuples**

Step 1
- Testing scripts
- Run locally
- Starterkit lesson
 about it

Step 2a
- Running scripts
 on grid
 via ganga
- Starterkit lesson
 about it
Analysis flow

First accessing **Ntuples**

Step 1
- Testing scripts
- Run locally
- Starterkit lesson about it

Step 2a
- Running scripts
 - via ganga
 - Starterkit lesson about it

Introduction to this first session on Wednesday
Analysis flow

First accessing **Ntuples**

Step 1

Testing **scripts**

- Run locally
- **Starterkit lesson** about it

Step 2a

Running **scripts**

- on grid
- via **ganga**

Step 2b

Running **scripts**

- centralised
- via Analysis
- Production
- **Starterkit lesson** about it
First accessing **Ntuples**

Introduction to Analysis Production on Wednesday

- **Step 1**
 - Testing
 - Run locally
 - Starterkit lesson about it

- **Step 2a**
 - Running scripts
 - via ganga
 - Starterkit lesson about it

- **Step 2b**
 - Running scripts
 - via Analysis Production
 - Starterkit lesson about it
Now the actual analysis flow
Now the actual analysis flow

Monte Carlo → Define Selection → Collision Data
Now the actual analysis flow
LHCb software: PIDCalib, TrackCalib,…
Now the actual analysis flow

Analysis flow

- Monte Carlo
- Collision Data
- Calibration
- Define Selection
- MVA
- Apply Selection
Now the actual analysis flow
Now the actual analysis flow
Now the actual analysis flow

- Monte Carlo
- Calibration
- Define Selection
- MVA
- Efficiency Acceptance
- Corrected Observable
- Systematic Uncertainty
- Collision Data
- Apply Selection
- Number of Signal events
Now the actual **analysis flow**

- **Monte Carlo**
- **Calibration**
 - Define Selection
 - **MVA**
 - Efficiency Acceptance
- **Collision Data**
- **Apply Selection**
- **Number of Signal events**
- **Corrected Observable**
- **Systematic Uncertainty**

Check[starterkit](https://example.com) for more useful software
Analysis flow

Now the actual analysis flow

Never this smooth, this is totally normal!
Towards publication

Analysis now in principle done:

- **Analysis note**: Contains all studies, documentation of your analysis, published on CDS at the end
- **Working group review**: AnaNote in good state, working group reader, WG pre-approval talk, after answering all questions (from talks and readers) WG approval talk
Towards publication

Analysis now in principle done:

- **Analysis note:** Contains all studies, documentation of your analysis, published on CDS at the end
Towards publication

Analysis now in principle done:

- **Analysis note:** Contains all studies, documentation of your analysis, published on CDS at the end
- **Working group review:** AnaNote in good state, working group reader, WG pre-approval talk, after answering all questions (from talks and readers) WG approval talk
- **Physics reviewer:** Will be assigned upon request of WG convener, same procedure as with WG, update of AnaNote, give ok to unblind with WG convener (if necessary)
Analysis now in principle done:

- **Analysis note**: Contains all studies, documentation of your analysis, published on CDS at the end.
- **Working group review**: AnaNote in good state, working group reader, WG pre-approval talk, after answering all questions (from talks and readers) WG approval talk.
- **Physics reviewer**: Will be assigned upon request of WG convener, same procedure as with WG, update of AnaNote, give ok to unblind with WG convener (if necessary).
 - **Analysis code** need to be accessible on Gitlab, including clear instruction how to reproduce your results, necessary tuples stored on EOS.
Towards publication

Analysis now in principle done:

- **Analysis note**: Contains all studies, documentation of your analysis, published on [CDS](https://cds.cern.ch) at the end.

- **Working group review**: AnaNote in good state, working group reader, WG pre-approval talk, after answering all questions (from talks and readers) WG approval talk.

- **Physics reviewer**: Will be assigned upon request of WG convener, same procedure as with WG, update of AnaNote, give ok to unblind with WG convener (if necessary).
 - **Analysis code** need to be accessible on [Gitlab](https://gitlab.com), including clear instruction how to reproduce your results, necessary tuples stored on [EOS](https://eos cen.ch).
 - Reviewing **paper draft**, if happy request **Editorial Board Reviewer**.
Towards publication

Analysis now in principle done:

- Analysis note: Contains all studies, documentation of your analysis, published on CDS at the end
- Working group review: AnaNote in good state, working group reader, WG pre-approval talk, after answering all questions (from talks and readers) WG approval talk
- Physics reviewer: Will be assigned upon request of WG convener, same procedure as with WG, update of AnaNote, give ok to unblind with WG convener (if necessary)

 - Analysis code need to be accessible on Gitlab, including clear instruction how to reproduce your results, necessary tuples stored on EOS
 - Reviewing paper draft, if happy request Editorial Board Reviewer

- Collaboration wide review process: Approval to go to paper talk, institute reviewers, two rounds, all comments need to be addressed, followed by all reviewer and physics coordinator
Towards publication

Analysis now in principle done:

• **Analysis note**: Contains all studies, documentation of your analysis, published on CDS at the end

• **Working group review**: AnaNote in good state, working group reader, WG pre-approval talk, after answering all questions (from talks and readers) WG approval talk

• **Physics reviewer**: Will be assigned upon request of WG convener, same procedure as with WG, update of AnaNote, give ok to unblind with WG convener (if necessary)

• **Analysis code**: need to be accessible on Gitlab, including clear instruction how to reproduce your results, necessary tuples stored on EOS

• **Reviewing paper draft**: if happy request Editorial Board Reviewer

• **Collaboration wide review process**: Approval to go to paper talk, institute reviewers, two rounds, all comments need to be addressed, followed by all reviewer and physics coordinator

Helpful are the LHCb guidelines for the preservation, the flowchart for review steps, the Publishing FAQ

And ask your colleagues.

In the end we are a collaboration! :)}
Analysis preservation needs to things

- If you don’t use the **lb-conda environment**, preserve the package versions of the software e.g. with your own **conda environment** or a **docker container**

- **Analysis code** need to be accessible on **Gitlab**, the use of **snakemake** can make it easier to make your workflow reproducible
Analysis preservation needs to things

- If you don’t use the lb-conda environment, preserve the package versions of the software e.g. with your own conda environment or a docker container.
- Analysis code need to be accessible on Gitlab, the use of snakemake can make it easier to make your workflow reproducible.

Never heard of snakemake?

No problem, next up a tutorial about it :)