
Flash measurements

Goal: measure the thermal diffusivity of the carbon foams Technique:

- Excite one side of the sample with a short (0.01 s) heat pulse
- Measure the temperature history on the other side

Results:

- The ERG sample follows the Fourier thermal conduction rule ⇒ the fit can be used to measure the thermal diffusivity
- The AllCompLD differs from Fourier fit ⇒ not suitable to investigate the thermal diffusivity
- The GK constitutive equation fits well to AllCompLD measurements ⇒ investigate the thermal diffusivity and the additional parameters of the GK model.

The measured thermal diffusivity

EGR samples:

AllCompLD samples:

Sample ID	$10^{-7} [m^2/s]$		Sample ID	$10^{-6} [m^2/s]$	10^{-6} [m ² /s]
ERG_1	6.06 ± 0.12	_	AllComp_1	$\frac{10}{8.25 \pm 0.74}$	$\frac{10}{6.9 \pm 0.45}$
ERG_2	7.45 ± 0.19				
ERG 3	737 ± 054		AllComp_2	5.78 ± 0.27	4.55 ± 0.2

Conclusions and questions:

- The reproducibility for one sample is good, as the errors mentions in the table.
- The reproducibility from sample to sample is not better than 50 %. We expect that it comes from the different inner structure. Do you experience the same effect in CERN during measurements?
- Which method did you use in CERN to measure the thermal conductivity? Do you measure the heat capacity of the samples in CERN? ⇒ It would be good to compare the measured properties with two different methods.
- Is the last samples we got from the CERN known to be orthotropic? If yes, where they cut in different directions for the two separated packs we get?

Future plane:

Estimate under which conditions gives the Fourier theory (implemented in Ansys) gives a good
approximation for GK theory (was found to describe the measurements well).