

RaToPUS DC/DC Converter

- Thanks to Yves THUREL for support during design phase!
- Two stages: AC/DC followed by DC/DC
 - AC/DC
 - COTS toroidal transformer
 - 24V mainly used in industrial applications
 - No need for safety certification

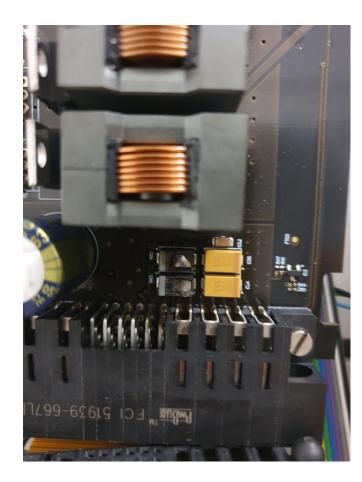
- DC/DC converters
 - Buck topology

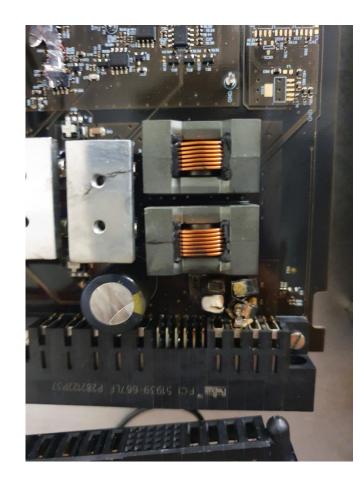
- Same components for both converters
- $24VDC \rightarrow 12VDC$
 - 100W
 - 93% efficiency at full load
- $24VDC \rightarrow 5VDC$
 - 10W
 - 80% efficiency

RaToPUS v2 CHARM tests

• 3 radiation campaigns of DC/DC card at position 13

- Campaign 1:
 - Early failure of PWM controller UC2843
 - Went back to TL2843
 - TL2843 initially excluded due to misbehaviour >65 °C on RaToPUS v1
- Campaign 2:
 - Both units reached 620Gy
 - Suspected failure of *TL2843's* internal reference
 - Slow drift of output voltage before abrupt drop to OV
- Campaign 3:
 - Populated board with MOSFETs for synchronous rectification
 - Both units failed at ~200Gy
 - Rectification MOSFET blew up on both unit
 - Suspected failure of the NCP5183 MOSFET driver (dead time conduction)


CHARM tests


- Campaign 4:
 - AC/DC stage reached >700Gy
 - One DC/DC unit with external TL1431 voltage reference instead of internal TL2843 reference for 12V converter
 - Reached ~450Gy for both 12V and 5V outputs (while 620Gy were reached in campaign 2)
 - Different position on the rack -> higher flux impact ?
 - One unit with ADC AD7291BCPZ instead of ATSAMD21 micro-controller for voltage/current monitoring
 - ADC reference taken from RADWG database
 - tested at PSI, no destructive event nor functional interrupt reported
 - Use of system board (HYDRA processor) for I2C communication
 - I2C bus stuck after ~200Gy requiring a power-cycle of the RaToPUS unit
 - -> 5V not anymore functional after the power cycle
 - To be checked if caused by the 3.3V LDO used to power the ADC

CHARM tests

- Temperature tests performed
 - Functional up to 85 degrees C
 - Recovers well during cool down
- Plans for future test campaign
 - 3.3V LDO removal, will use a proven LM317 regulator
 - Periodic power cycles will be performed during irradiation

