NLO QCD and EW corrections to vector-boson scattering into $\rm W^+W^-$ at the LHC

 $\mathrm{pp} \to \mathrm{e}^+ \nu_\mathrm{e} \mu^- \bar{\nu}_\mu \mathrm{jj} + X$

2202.10844

Christopher Schwan

with: Ansgar Denner, Robert Franken and Timo Schmidt

15 November 2022, CERN

Reminder: vector-boson scattering

- e together with two jets
- () at $\mathcal{O}(\alpha^6)$ (LO)
- $\rightarrow~$ EW and QCD corrections for $4\ell+2j$

4 categories:

- $W^{\pm}W^{\pm} \colon$ like-sign scattering
- $W^{\pm}Z$: WZ scattering
- ZZ: ZZ scattering
- W^+W^- : opposite-sign scattering

fully off-shell scattering: $pp \to e^+ \nu_e \mu^- \bar{\nu}_\mu j j$

Overview OO	EW Corr. for VBS ●○○	Distributions 0000	Conclusion O
Two setups: VBS vs	. Higgs		
VBS setup [CMS collaboratio	n]		
Leptons: ${\it p}_{{ m T},,}$ ${\it p}_{{ m T},\ell^+\ell^-}$	$ y_\ell > 25 \text{ GeV}, \qquad y_\ell < 2.4,$ $ y_\ell > 30 \text{ GeV}, \qquad M_{\ell^+\ell^-} > 20 \text{ GeV},$	$p_{ m T,miss} > 20 m GeV$	
Jets: P M	$ y_{\mathrm{T},j}>30 \mathrm{GeV}, \qquad y_j <4.5,$ $ j_{1j_2}>500 \mathrm{GeV}, \Delta y_{j_1j_2} >2.5.$	$\Delta R_{\mathrm{j}\ell} >$ 0.4,	
Higgs setup [CMS collaborat	ion]		

Leptons:

$$\begin{split} p_{\mathrm{T},\ell_1} &> 25 \,\mathrm{GeV}, \quad p_{\mathrm{T},\ell_2} > 10 \,\mathrm{GeV}, \qquad |y_\ell| < 2.4, \quad p_{\mathrm{T},\mathrm{miss}} > 20 \,\mathrm{GeV}, \\ p_{\mathrm{T},\ell^+\ell^-} &> 30 \,\mathrm{GeV}, \quad M_{\ell^+\ell^-} > 12 \,\mathrm{GeV}, \quad \Delta R_{\ell^+\ell^-} > 0.4, \\ & \mathbf{50} \,\mathrm{GeV} < M_{\mathrm{T},\ell^+\ell,\mathrm{miss}} < 125 \,\mathrm{GeV}, \end{split}$$

Jets:

$$\begin{split} p_{\mathrm{T}, \mathrm{j}_{1,2}} &> 30 \, \mathrm{GeV}, \qquad |y_{\mathrm{j}_{1,2}}| < 4.7, \quad \Delta R_{\mathrm{j}_{1,2}\ell} > 0.4, \quad p_{\mathrm{j}_3} < 30 \, \mathrm{GeV} \\ M_{\mathrm{j}_{1j_2}} &> 400 \, \mathrm{GeV}, \quad |\Delta y_{\mathrm{j}_{1j_2}}| > 3.5. \end{split}$$

$$M_{\mathrm{T},\ell^+\ell,\mathrm{miss}}^2 = 2 p_{\mathrm{T},\ell^+\ell^-} p_{\mathrm{T},\mathrm{miss}} (1 - \cos \Delta \phi_{\ell^+\ell^-,\mathrm{miss}})$$

EW Corr. for VBS	
000	

EW corrections for VBS fiducial cross sections

• EW corrections, $\delta^{\alpha^7}=\sigma^{\alpha^7}_{\rm NLO}/\sigma^{\alpha^6}_{\rm LO},$ for VBS processes typically $-15\,\%$ to $-16\,\%$

ullet can be understood from (VBS-independent) EW logs with ${\it Q}={\it M}_{4\ell}$

$$\delta_{\rm EW,LL} = \frac{\alpha}{4\pi} \left\{ -4C_W^{\rm EW} \log^2 \left(\frac{Q^2}{M_W^2}\right) + 2b_W^{\rm EW} \log \left(\frac{Q^2}{M_W^2}\right) \right\}$$

Process	W^+W^+	W^+Z	ZZ	
$\sigma^{lpha^7}_{ m NLO}[{\sf fb}]$	-0.2169(3)	-0.04091(2)	-0.015573(5)	
$\sigma^{lpha^6}_{ m LO}[{\sf fb}]$	1.4178(2)	0.25511(1)	0.097683(2)	
δ^{α^7} [%]	-15.3	-16.0	-15.9	

ightarrow What's special about $\mathrm{W^+W^-}$ VBS?

Refs.:

- ullet $\mathrm{W}^+\mathrm{W}^+\colon$ [B. Biedermann, A. Denner, M. Pellen]
- ullet $\mathrm{W}^+\mathrm{Z}$: [A. Denner, S. Dittmaier, P. Maierhöfer, M. Pellen, C.S.]
- ZZ: [A. Denner, R. Franken, M. Pellen, T. Schmidt]

EW Corr. for VBS	
000	

EW corrections for VBS fiducial cross sections

• EW corrections, $\delta^{\alpha^7}=\sigma^{\alpha^7}_{\rm NLO}/\sigma^{\alpha^6}_{\rm LO},$ for VBS processes typically $-15\,\%$ to $-16\,\%$

ullet can be understood from (VBS-independent) EW logs with ${\it Q}={\it M}_{4\ell}$

$$\delta_{\rm EW,LL} = \frac{\alpha}{4\pi} \left\{ -4C_W^{\rm EW} \log^2 \left(\frac{Q^2}{M_W^2}\right) + 2b_W^{\rm EW} \log \left(\frac{Q^2}{M_W^2}\right) \right\}$$

Process	W^+W^+	W^+Z	ZZ	W^+W^-	W^+W^-
				(VBS setup)	(Higgs setup)
$\sigma_{ m NLO}^{lpha^7}[{ m fb}]$	-0.2169(3)	-0.04091(2)	-0.015573(5)	-0.307(1)	-0.103(1)
$\sigma^{lpha^6}_{ m LO}[{\sf fb}]$	1.4178(2)	0.25511(1)	0.097683(2)	2.6988(3)	1.5322(2)
δ^{α^7} [%]	-15.3	-16.0	-15.9	-11.4	-6.7

 $\rightarrow\,$ What's special about W^+W^- VBS?

Refs.:

- W^+W^+ : [B. Biedermann, A. Denner, M. Pellen]
- $\bullet\ W^+Z$: [A. Denner, S. Dittmaier, P. Maierhöfer, M. Pellen, C.S.]
- ZZ: [A. Denner, R. Franken, M. Pellen, T. Schmidt]

Overview 00	EW Corr. for VB ○O●	Distributions Conclus 0000 0	ion
W^+W^-	VBS and Higgs VBF:	$\delta^{lpha^7} = \sigma^{lpha^7}_{ m NLO}/\sigma^{lpha^6}_{ m LO}$	
δ 0 % ·	α ⁷ †	In the Higgs setup we force the Higgs on-shell; instead of VBS we rather have VBF Higgs $pp \rightarrow Hjj \rightarrow 4\ell jj$	
		$60{ m GeV} < M_{{ m T},\ell^+\ell,{ m miss}} < 125{ m GeV}$	
-6.7 % ⁻	Higgs setup	Higgs cut removes 98 % of the Higgs BW peak	
		$ M_{4\ell}-M_{ m H} >20\Gamma_{ m H}$	
-11.4 %	-VBS setup		
-13.2 %	VBS setup + Higgs cut	\rightarrow a sizable fraction (27%) of Higgs VBF mixes with	
-15%	(typical VBS EW corr.)	\rightarrow mostly responsible for smaller corrections	

		Distributions	
00	000	• 0 00	0

LO distributions: dijet invariant mass

- left: VBS-, right: Higgs-setup
- \bullet starting at $M_{j_1j_2}\approx 1500\,\text{GeV}/1000\,\text{GeV}$ EW and QCD production cross for VBS/Higgs setup resp.
- size of the 4 gluon loop-induced up to 4.5 % / 5 %

		Distributions	
00	000	0000	0

LO distributions: dijet rapidity difference

- left: VBS-, right: Higgs-setup
- $\bullet\,$ starting at $\Delta y_{j_1 j_2} \approx 6/5$ EW and QCD production cross for VBS/Higgs setup resp.
- $\bullet\,$ size of the 4 gluon loop-induced up to $2.5\,\%/5\,\%$ resp.

		Distributions	
00	000	0000	0

NLO distributions: dijet invariant mass

- left: VBS-, right: Higgs-setup
- band indicates MC integration uncertainties
- increasing EW corrections in the tail
- integrated QCD correction: -5.1 % / -21.6 % resp.
- increase of the QCD corrections in the Higgs setup due to the jet veto

		Distributions	
00	000	0000	0

NLO distributions: dijet invariant mass

- left: VBS-, right: Higgs-setup
- band indicates 7-point scale uncertainties
- no overlapping bands: EW corrections not covered

	Conclusion

Summary

 $\bullet\,$ Calculation of W^+W^- scattering concludes the NLO EW/QCD VBS computations (with fully leptonic decays, unpolarized)

- Opposite sign VBS shares many features of its cousins, but ...
- overlaps with Higgs VBF (27%) and therefore
- ullet lowers EW corrections from the expected $-15\,\%$ to \ldots

- EW corrections: -11.4 % / -6.7 % for the VBS/Higgs setup resp.
- QCD corrections: -5.1 %/-21.6 % resp.
- loop induced corrections up to 5 % (of total LO) in some distributions

No Higgs integrated results

VBS cross sections with additional Higgs cut:

Contribution	$\sigma^{lpha^6}_{ m LO}[{\sf fb}]$	$\Delta \sigma^{lpha^7}_{ m NLO}$ [fb]	δ^{lpha^7} [%]	$\Delta \sigma_{ m NLO}^{lpha_{ m s}lpha^6}$ [fb]	$\delta^{\alpha_{s}\alpha^{6}}$ [%]
VBS only	1.6117(2)	-0.239(2)	-14.8	-0.043(3)	-2.7
VBS + WWW	0.11398(2)	-0.0143(2)	-12.5	0.0080(5)	7.1
VBS + WWZ	0.24916(4)	-0.0324(3)	-13.0	0.0018(11)	0.1
WWW only	$5.303(2) imes 10^{-5}$	$-1.43(2) imes 10^{-5}$	-27.0	0.01110(2)	$2.1 imes10^4$
WWZ only	$9.415(2) imes 10^{-5}$	$-2.80(2) imes 10^{-5}$	-29.7	0.004021(3)	$4.3 imes10^3$
$\gamma\gamma/\gamma g$	$6.832(4) \times 10^{-6}$	0.02575(3)	$3.8 imes10^5$	0.0108(2)	$1.6 imes10^5$
total	1.9750(2)	-0.260(2)	-13.2	-0.007(3)	-0.4

NLO distributions: transverse momentum of the leading jet

- left: VBS-, right: Higgs-setup
- band indicates 7-point scale uncertainties

NLO distributions: dilepton invariant mass

- left: VBS-, right: Higgs-setup
- band indicates 7-point scale uncertainties

NLO distributions: leading jet rapidity

- left: VBS-, right: Higgs-setup
- band indicates 7-point scale uncertainties

LO distributions: dilepton invariant mass

- left: VBS-, right: Higgs-setup
- band indicates MC integration uncertainties

LO distributions: four-lepton invariant mass

- left: VBS-, right: Higgs-setup
- band indicates MC integration uncertainties

LO distributions: Leading-jet-muon distance

- left: VBS-, right: Higgs-setup
- band indicates MC integration uncertainties

LO distributions: Centrality of the positron

- left: VBS-, right: Higgs-setup
- band indicates MC integration uncertainties

NLO distributions: leading jet transverse momentum

- left: VBS-, right: Higgs-setup
- band indicates MC integration uncertainties

NLO distributions: dilepton transverse momentum

- left: VBS-, right: Higgs-setup
- band indicates MC integration uncertainties

NLO distributions: dilepton invariant mass

- left: VBS-, right: Higgs-setup
- band indicates MC integration uncertainties

NLO distributions: leading jet rapidity

- left: VBS-, right: Higgs-setup
- band indicates MC integration uncertainties

NLO distributions: leading jet rapidity separation

- left: VBS-, right: Higgs-setup
- band indicates MC integration uncertainties