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General motivation

Wish to understand the coupling of quantum-mechanical systems to an external
gravitational field
‘gravitational field’: all ten components gµν of the metric

g00 ⇒ Newtonian potential scalar part

g0a ⇒ gravitomagnetism  vector part

gab ⇒ gravitational waves  tensor part
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Post-Newtonian effects of φ

Newtonian potential φ in quantum Hamiltonian:

H =
P2

2m
+ mφ

+ ???

First test: Colella, Overhauser, Werner 1975

R Colella, A W Overhauser, S A Werner: PRL 34, 1472–1474 (1975)

Higher-order coupling of φ?
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Heuristic description of post-Newtonian effects

Start with Newtonian description

Include ‘relativistic effects’:

Doppler shifts, gravitational redshift, time dilation
(special-relativistic & gravitational), mass defect, . . .

Example: composite system under gravity

Idea: Internal DoF evolve with respect to proper time post-Newtonian couplings between
internal and external DoF
Famous proposed effect: Dephasing of large superpositions in atom interferometry
I Pikovski, M Zych, F Costa, Č Brukner: Universal decoherence due to gravitational time dilation, arXiv:1311.1095, Nat. Phys. 11, 668–672 (2015)

Similar: Interferometric measurement of special-relativistic time dilation
S Loriani et al.: Interference of Clocks: A Quantum Twin Paradox, arXiv:1905.09102, Sci. Adv. 5, eaax8966 (2019)
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Conceptual issues of available descriptions

No guarantee of completeness or independence of
‘relativistic effects’:

Frequency shifts← time dilation

Internal-external coupling from time dilation = coupling from mass defect:

Htot ≈
P2

2(M + Hint/c2)
+ (M + Hint/c2)φ (1)

Need semi-classical notions such as wordlines

Assumption of separating state
|ψ〉tot = |ψ〉ext ⊗ |ψ〉int even though
interactions are the point of interest
Restriction to semi-classical
central states
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The need for systematic descriptions

For reliable predictions: need systematic method, complete and exhaustive

Proper derivation of couplings, starting from well-established first principles

No a priori restrictions on the state of matter

More fundamental understanding, and the only way to properly test predictions
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Why post-Newtonian expansions?

Special-relativistic theories of matter: Equivalence principle minimal coupling:
‘ηµν → gµν, ∂µ → ∇µ’

Not applicable to Galilei-relativistic quantum mechanics

Best description of quantum matter under gravity: ‘Relativistic’ quantum field theory on
curved spacetimes (QFTCS) – but mathematically and conceptually heavy
Search for easier systematic approach – in easier situation! Interested in ‘post-Newtonian
corrections’, i.e.:

Weak gravitational fields
Approximately stationary spacetime ( particles)
Small energies (no pair production)

Include post-Newtonian effects perturbatively
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‘Weak gravity’ – geometric setting

‘Post-Newtonian expansion’ needs notions of:
Space and time
Slow velocities
Weak gravity

Background structures: Minkowski metric η, inertial observer u

Adapted coordinates (x0 = ct, xa): u = ∂/∂t, ηµν = diag(−1, 1, 1, 1)

Physical spacetime metric: power series in c−1

gµν = ηµν +
∞

∑
k=1

c−kg(k)µν (2)

 systematic expansion of theory in c−1!
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Simple two-particle atom
Massive spin-half particle

Simple two-particle atom

Model composite system: Two oppositely charged point particles (without spin)

Sonnleitner and Barnett 2018: Systematic derivation of ‘approximately relativistic’
Hamiltonian in external EM field, i.e. complete to O(c−2)
M Sonnleitner, S M Barnett: Mass-energy and anomalous friction in quantum optics, arXiv:1806.00234, PRA 98, 042106 (2018)

Our work: extension to weak gravitational field (Eddington–Robertson PPN metric)

PKS, D Giulini: Post-Newtonian Hamiltonian description of an atom in a weak gravitational field, arXiv:1908.06929,
Phys. Rev. A 100, 052116 (2019);

extended in
PKS: Post-Newtonian Description of Quantum Systems in Gravitational Fields, arXiv:2009.11319, doctoral thesis,

https://doi.org/10.15488/10085
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Simple two-particle atom
Massive spin-half particle

Two-particle atom: calculational scheme

Classical Lagrangian
for particles and

EM field in curved spacetime

Solns to internal
Maxwell equations

Classical
Hamiltonian

H[mult.]
canon. quant.

PZW trafo
H[com]

CoM

coords

H[com] = HC + HA + HAL + HX (3)

Details of calculations
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Simple two-particle atom
Massive spin-half particle

Two-particle atom: resulting Hamiltonian

Hamiltonian contains ‘gravitational corrections’

Simplified form in metric quantities

HA,final

=
(3)g−1

R (pr ,pr)
2µ + e1e2

4πε0
√

(3)gR(r,r)

+ (SR & ‘Darwin’ corrections + ∇φ term)

(4a)

HC,final

= Hpoint

(
P, R; M +

HA,final
c2

)

(4b)

Full Hamiltonian
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4 Conclusion

Review: D Giulini, A Großardt, PKS: Coupling Quantum Matter and Gravity, arXiv:2207.05029
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Massive spin-half particle

Spin-half field ψ, minimally coupled Dirac equation

(iγµ(∇µ − iqAµ)−mc)ψ = 0 (5)

Restrict to one-particle sector effective description by positive-frequency classical
solutions
Systematic description from POV of observer on fixed worldline γ in two independent steps:

1 Weak gravity: expansion in geodesic distance to γ
2 Slow velocities: post-Newtonian expansion in c−1

Fully general situation: Spacetime can have curvature (R), observer can be accelerated (a),
may use rotating frame (ω)

A Alibabaei: Geometric post-Newtonian description of spin-half particles in curved spacetime, arXiv:2204.05997, master’s thesis;
A Alibabaei, PKS, D Giulini: in preparation
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Step 1: ‘Weak-gravity’ expansion in generalised Fermi normal coordinates

Idea

Fermi normal coordinates = ‘proper coordinates’
for observer along worldline γ

Arbitrary orthonormal vector fields (ei)
along γ

Point p close to γ: unique spacelike
geodesic to γ

Coordinates for p: proper time of starting
point and initial direction of this geodesic

Expand Dirac equation in geodesic distance:
weak gravity & weak inertial effects

γ(τ)
p

(xµ(p)) = (cτ, xi) xiei

γ

e0

e1
e2

e3

RI JKL · x2 � 1,
a
c2 · x� 1,

ω

c
· x� 1, (6)
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Step 2: Post-Newtonian expansion
Post-Newtonian expansion of Dirac field:

ψ = e−imc2τ

(
ψA
ψB

)
, ψA,B = ψ

(0)
A,B + c−1ψ

(1)
A,B + c−2ψ

(2)
A,B + O(c−3) (7)

Insert into weak-gravity Dirac equation complete post-Newtonian Pauli equation
(red: mistakes in literature)

i∂τψA = HPauliψA (8a)

HPauli = −
1

2m
(σ · D)2 − qcA0 + m(a · x) + mc2

2
R0l0mxl xm

+
1

8m
R +

1
4m

R00 +
ic
3

R0ixi − 1
2

σiω
i − 1

8m3c2 (σ · D)4

+

{
− 1

2mc2 (a · x)− 1
4m

R0l0mxl xm
}
(σ · D)2 − 1

4m2c2 qσiσjDiEj

+ (further a, R, ω corrections, incl. spin coupling) + O(c−3) + O(x3) (8b)

Full Hamiltonian
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Conclusion

Quantum experiments under gravity require properly relativistic descriptions

Systematic and exhaustive scheme: fully controlled post-Newtonian approximation
Hamiltonian description of an atom in weak gravity:

First systematic and complete derivation up to order c−2

Confirms intuitive point-particle picture: effectively M→ M + Hint/c2

Hamiltonian description of a slow spin-half particle in weak gravity:
Two steps: 1. weak gravity, 2. post-Newtonian
Systematic and complete derivation of post-Newtonian Pauli equation for general observer,
using general frame

Many thanks for your attention!

21 / 21 Philip K. Schwartz Coupling quantum matter to gravity: a systematic post-Newtonian approach



The problem
Framework: post-Newtonian expansions

Model systems
Conclusion

Conclusion

Quantum experiments under gravity require properly relativistic descriptions

Systematic and exhaustive scheme: fully controlled post-Newtonian approximation
Hamiltonian description of an atom in weak gravity:

First systematic and complete derivation up to order c−2

Confirms intuitive point-particle picture: effectively M→ M + Hint/c2

Hamiltonian description of a slow spin-half particle in weak gravity:
Two steps: 1. weak gravity, 2. post-Newtonian
Systematic and complete derivation of post-Newtonian Pauli equation for general observer,
using general frame

Many thanks for your attention!

21 / 21 Philip K. Schwartz Coupling quantum matter to gravity: a systematic post-Newtonian approach



Details of atomic calculation
Details of spinor calculation

Appendix: Details

5 Details of atomic calculation

6 Details of spinor calculation

1 / 6 Philip K. Schwartz Coupling quantum matter to gravity: a systematic post-Newtonian approach



Details of atomic calculation
Details of spinor calculation

Details of atomic calculation: setting the stage

Physical spacetime metric: Eddington–Robertson PPN metric

; GR: β = γ = 1

g =

(
−1

− 2
φ

c2 − 2

β

φ2

c4

)
c2dt2 +

(
1

− 2

γ

φ

c2

)
dx2

+ O(c−4)

(9)

Idea: perturbatively include gravity into calculations by S&B
1 Couple φ to particles only
2 Calculate EM Lagrangian with φ
3 Repeat calculation of Hamiltonian including corrections to EM
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Coupling of gravity to the particles

Include coupling of φ to kinetic terms of particles:

Lpoint = −mc2
√
−gµν ẋµ ẋν/c2 + mc2

= mẋ2

2

(
1 + ẋ2

4c2

)
− 2γ+1

2
mφ

c2 ẋ2

−mφ
(

1 + (2β− 1) φ

2c2

)
+ O(c−4) (10)

Ignore coupling to EM

Repeating calculation by S&B:

HC,new = HC + 2γ+1
2Mc2 P · φ(R)P +

(
M +

p2
r

2µc2

)
φ(R) + (2β− 1)Mφ(R)2

2c2 (11a)

HA,new = HA + 2γ
φ(R)

c2
p2

r
2µ −

2γ+1
2c2

m1−m2
m1m2

pr · (r ·∇φ(R))pr (11b)
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Coupling of gravity to the EM field

Start from EM action in gravity

Rewrite Maxwell equations in gravity in terms of ‘flat’ equations

Solve perturbatively

‘Internal’ potentials: A⊥ = A⊥non-grav. + O(c−4),

φel.(x, t) = φel.,non-grav.(x, t)

+ c−2
[

γ + 1
4πε0

∫
d3x′

φ(x′, t)ρ(x′, t)
|x− x′|

− γ + 1
4π

∫
d3x′

1
|x− x′| (∇φ ·∇φel.,non-grav.)(x′, t)

]
+ O(c−4) (12)

 EM Lagrangian with gravitational corrections
Back
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The full atomic Hamiltonian

Back
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The full Pauli Hamiltonian

Back
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