Kick Strength and Phase Advance

- Relative rms phase advance error with respect to the model used for defining the quality of TbT measurements
- First TbT tracking over 500 turns for FCC-Z mode and 360 installed BPMs
- Without synchrotron radiation
- Gaussian BPM noise applied

Without BPM noise phase error increases with increasing excitation strength

With BPM noise (here 10 μm) optimum kick strength found at 4 $\sigma_{_{X}}$, 4 $\sigma_{_{y}}$

Excitation needs to be sufficiently large to compensate for BPM noise

Effect on vertical plane 20 times more severe

FCC-Z mode at 45.6 GeV single particle tracking

Kick Strength and Phase Advance

- Relative rms phase advance error with respect to the model used for defining the quality of TbT measurements
- First TbT tracking over 500 turns for FCC-Z mode and 360 installed BPMs
- Without synchrotron radiation
- Gaussian BPM noise applied

FCC-Z mode 500 turns, no synchrotron radiation Minimum hor and ver. phase advance error with 10 μ m BPM noise: 0.24 x 10⁻³ (2 π) and 5.28 x 10⁻³ (2 π)

Comparison LHC 6600 turns, AC-dipole Minimum hor and ver. phase advance error, ~100 μ m BPM noise: < 1 x 10⁻³ (2 π) FCC-Z mode at 45.6 GeV single particle tracking

Phase Error

- Relative rms phase advance error figure-of-merit for measurement quality
- Error increases with BPM noise

FCC-Z mode with 45.6 GeV beam energy Single particle tracking in SAD

- Kick amplitude 6 σ_x , σ_y
- Effect of radiation damping negligble
- BPM noise 20 times larger for vertical plane

FUTURE CIRCULAF

COLLIDER

JACQUELINE KEINTZEL

Back-up

Phase Error - No Damping

- Relative rms phase advance error figure-of-merit for measurement quality
- 500 turns, only 350 BPMs, 1 seed \rightarrow to be improved in future studies
- Various kick amplitudes
- Without noise: Smaller kick lower error
- With noise: Optimum kick strengths
 - 20 μm: 6 σ_x, σ_y
 - 100 μm: 12 σ_x, σ_v

Amplitude must be large enough to compensate for BPM noise

FCC-Z mode with 45.6 GeV beam energy Single particle tracking in SAD **No radiation damping**

Phase Error - Damping

- Including synchrotron radiation damping
 - 20 μm: 6-8 σ_x, σ_v

FCC-Z mode with 45.6 GeV beam energy Single particle tracking in SAD **With radiation damping**

• 100 μm: 6-8 σ_x, σ_v

The optimum kick strength changes if single kicks and damping or constant amplitude is used for optics measurements

Phase Error - No Damping

- Relative rms phase advance error figure-of-merit for measurement quality
- 500 turns, only 350 BPMs, 1 seed \rightarrow to be improved in future studies
- Various kick amplitudes
- Without noise: Smaller kick lower error
- With noise: Optimum kick strengths
 - 20 μm: 6 σ_x, σ_y

FCC-Z mode with 45.6 GeV beam energy Single particle tracking in SAD **No radiation damping**

Single Kicks for TbT Z-Mode

- Orbit recorded in every turn
- Beam excited
- Orbit damps after single kick
- Equal H and V damping

FCC-Z mode with 45.6 GeV beam energy Single particle tracking in SAD after 6 sigma kick Damping time about 2300 turns, 40 MeV radiation losses per turn

→ Slow enough to be used for optics measurements

Single Kicks for TbT ttbar-Mode

- Orbit recorded in every turn
- Beam excited
- Orbit damps after single kick
- Equal H and V damping

FCC-ttbar mode with 182.5 GeV beam energy Single particle tracking in SAD after 6 sigma kick Damping time about 40 turns, 10 GeV radiation losses per turn

→ Too fast to be used for optics measurements

CIRCULA

COLLIDEF

Q

JACQUELINE KEINTZEL

BPMS FOR TBT OPTICS MEASUREMENTS

Continous Excitation

- Orbit recorded in every turn
- Beam excited continously

FCC-Z mode with 45.6 GeV beam energy Single particle tracking in SAD without radiation damping

• Transverse feedback and amplification \rightarrow Driving on the natural tune

Continous Excitation

- Orbit recorded in every turn
- Beam excited continously

FCC-Z mode with 45.6 GeV beam energy Single particle tracking in MAD-X **without radiation damping**

- Transverse feedback and amplification \rightarrow Driving on the natural tune
- AC-Dipole \rightarrow can also drive at tune different from the natural one
- Radiation damping remains to be included

Harmonics Analysis

- Fourier Transformation including cleaning based on SVD performed
- \rightarrow Yields tunes, phases between BPMs, amplitudes, noise estimates, ...
- Optics then measured using harmonics analysis output

JACQUELINE KEINTZEL

