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• Many possible solutions
• Simplifications were made

• Don’t hesitate to ask questions during of after the presentation: clyde.laforge@cern.ch

Disclaimer
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• Present concept of technical debt
• Present tools and methods used in the CROME project keeping it in check

Goals
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Technical Debt

11/23/2022 Clyde Laforge | Paying Off Technical Debt of SoC Code-Bases 4



In software development, technical debt [. . . ] is the implied cost
of additional rework caused by choosing an easy (limited) solution
now instead of using a better approach that would take longer.

Technical Debt
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Causes:
• Unexpected evolution of the project
• Time constraints
• Lack of oversight
• ...
Consequences
• Shorter time to market
• Hinders further development
• Incurs interests

Technical Debt: continued
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Identification:
• Outdated documentation
• Band-aid bugfixes
• Parallel development

Solution:
• Re-factoring

Identification and Solutions to Technical Debt
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CROME Project
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SoC Number of Lines of Code (Without CROMiX)



Issues in CROME
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• What can I touch?
• Noisy commits

Going further: separate source and builddirectories
• Reduces noise
• Build configurations

A tasteless cocktail
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Configuration
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• Uniformity = less mental load
Code Style

11/23/2022 Clyde Laforge | Paying Off Technical Debt of SoC Code-Bases 13



• Vivado text base build
• Git guidelines

Extras
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Configuration
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Idea
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• Good support
• Very powerful
• Support for software dependency checking

GNU Autotools
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https://www.gnu.org/software/automake/manual/html_node/Autotools-Introduction.html


1. Replace configuration dependent values by @MY_VARIABLE@
2. Rename and add .in suffix at the end of the filename
3. Write configure.ac file
4. Enjoy

GNU Autotools: Steps
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GNU Autotools: Example
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GNU Autotools: Example – User interface
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Live Demo!
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Code style
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• Open source
• Can fix code automatically
• Many options with good documentation
• Supports CI-friendly formats

vhdl-style-guide
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https://vhdl-style-guide.readthedocs.io/en/latest/


CI implementation
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Vivado text-base build
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• make centered workflow
• CI integration
• Reduce number of entry points

• Dynamic generation of project
• Straightforward to version control
• Reproducible

• Compatibility with GUI
• Usage of project mode
• Work taken by the tool

Vivado Build
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Vivado build: Structure
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Vivado build: Dependencies
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• Source files cannot be added blindly to the project: collision if generated files arepresent in the source directory
• List all source files explicitly

• Vivado's synthesis can fail without resulting in a non-zero error code
• Use if clause with `get_property PROGRESS [get_runs synth_1]] != "100%"`

• Each vivado run produces many files which are usually not wanted.
• Disable them by using `vivado -nolog -nojournal -notrace [...]`.

• Vivado takes time to launch
• Reduce the number of steps

Vivado build: gotchas
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• A good technical debt is a managed technical debt
• No easy solution to paying it off

• GNU Autotools: Configuration/Software dependency checking
• vhdl-style-guide: style checking
• Make+tcl+vivado: text-based build

Conclusion
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Bonus Round
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• Develop in a separate branch
• Do not consider work done as long it is not merged back to main
• Commits should be focused on a single purpose and include the minimum amount ofmodifications
• Use many small commits during development
• Clean up commit history using “git rebase -i” at the end of feature development
• Write meaningful commit messages: one-line summary followed by sh

Git
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https://www.atlassian.com/git/tutorials/rewriting-history/git-rebase


• Ideas and advice on directory structure of code base
• Written for C++, but valuable in any case

Pitchfork project
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https://api.csswg.org/bikeshed/?force=1&url=https://raw.githubusercontent.com/vector-of-bool/pitchfork/develop/data/spec.bs


• My one hour build failed at the end due to a typo
• Use vivado’s “check_syntax” before building
• Command is not well-behaved, so post processing may be necessary

• Track files and not stages in make files
• Use “git status —ignored” to see if “make clean” does its job correctly

Building
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