
Paying Off Technical Debt of SoCCode-Bases Through Standards andGood Practices
Clyde Laforge, Hamza Boukabache, CROME Team
23 November 2022



• Many possible solutions
• Simplifications were made

• Don’t hesitate to ask questions during of after the presentation: clyde.laforge@cern.ch

Disclaimer

11/23/2022 2Clyde Laforge | Paying Off Technical Debt of SoC Code-Bases



• Present concept of technical debt
• Present tools and methods used in the CROME project keeping it in check

Goals

11/23/2022 3Clyde Laforge | Paying Off Technical Debt of SoC Code-Bases



Technical Debt

11/23/2022 Clyde Laforge | Paying Off Technical Debt of SoC Code-Bases 4



In software development, technical debt [. . . ] is the implied cost
of additional rework caused by choosing an easy (limited) solution
now instead of using a better approach that would take longer.

Technical Debt

11/23/2022 Clyde Laforge | Paying Off Technical Debt of SoC Code-Bases 5

©xkcd



Causes:
• Unexpected evolution of the project
• Time constraints
• Lack of oversight
• ...
Consequences
• Shorter time to market
• Hinders further development
• Incurs interests

Technical Debt: continued

11/23/2022 Clyde Laforge | Paying Off Technical Debt of SoC Code-Bases 6

©xkcd



Identification:
• Outdated documentation
• Band-aid bugfixes
• Parallel development

Solution:
• Re-factoring

Identification and Solutions to Technical Debt

11/23/2022 Clyde Laforge | Paying Off Technical Debt of SoC Code-Bases 7



11/23/2022 Clyde Laforge | Paying Off Technical Debt of SoC Code-Bases

8

CROME ProjectCERN Radiation Monitoring Electronics (CROME)

Plastic Air filled ionizationchamber

High Radiation Area Low Radiation Area

SPA6cable

Conceptual view of CROME at CERN

Bulk

Rackable

CERN Radiation Monitoring Electronics (CROME)

1000V

100fA

Two configurations :

CR
OM

ER
ack

atE
HN

1(N
orth

Are
a)

Uninterruptible Power SupplyIncludes a battery for continuousoperation

RadiationMonitoring andprocessingunits

Up to1km

CR
OM

EJ
unc

tion
Box

8



CROME Project

11/23/2022 Clyde Laforge | Paying Off Technical Debt of SoC Code-Bases 9

SoC Number of Lines of Code (Without CROMiX)



Issues in CROME

11/23/2022 Clyde Laforge | Paying Off Technical Debt of SoC Code-Bases 10



• What can I touch?
• Noisy commits

Going further: separate source and builddirectories
• Reduces noise
• Build configurations

A tasteless cocktail

11/23/2022 Clyde Laforge | Paying Off Technical Debt of SoC Code-Bases 11



Configuration

11/23/2022 Clyde Laforge | Paying Off Technical Debt of SoC Code-Bases 12



• Uniformity = less mental load
Code Style

11/23/2022 Clyde Laforge | Paying Off Technical Debt of SoC Code-Bases 13



• Vivado text base build
• Git guidelines

Extras

11/23/2022 Clyde Laforge | Paying Off Technical Debt of SoC Code-Bases 14



Configuration

11/23/2022 Clyde Laforge | Paying Off Technical Debt of SoC Code-Bases 15



Idea

11/23/2022 Clyde Laforge | Paying Off Technical Debt of SoC Code-Bases 16



• Good support
• Very powerful
• Support for software dependency checking

GNU Autotools

11/23/2022 Clyde Laforge | Paying Off Technical Debt of SoC Code-Bases 17

https://www.gnu.org/software/automake/manual/html_node/Autotools-Introduction.html


1. Replace configuration dependent values by @MY_VARIABLE@
2. Rename and add .in suffix at the end of the filename
3. Write configure.ac file
4. Enjoy

GNU Autotools: Steps

11/23/2022 Clyde Laforge | Paying Off Technical Debt of SoC Code-Bases 18



GNU Autotools: Example

11/23/2022 Clyde Laforge | Paying Off Technical Debt of SoC Code-Bases 19



GNU Autotools: Example – User interface

11/23/2022 Clyde Laforge | Paying Off Technical Debt of SoC Code-Bases 20



Live Demo!

11/23/2022 Clyde Laforge | Paying Off Technical Debt of SoC Code-Bases 21



Code style

11/23/2022 Clyde Laforge | Paying Off Technical Debt of SoC Code-Bases 22



• Open source
• Can fix code automatically
• Many options with good documentation
• Supports CI-friendly formats

vhdl-style-guide

11/23/2022 Clyde Laforge | Paying Off Technical Debt of SoC Code-Bases 23

https://vhdl-style-guide.readthedocs.io/en/latest/


CI implementation

11/23/2022 Clyde Laforge | Paying Off Technical Debt of SoC Code-Bases 24



Vivado text-base build

11/23/2022 Clyde Laforge | Paying Off Technical Debt of SoC Code-Bases 25



• make centered workflow
• CI integration
• Reduce number of entry points

• Dynamic generation of project
• Straightforward to version control
• Reproducible

• Compatibility with GUI
• Usage of project mode
• Work taken by the tool

Vivado Build

11/23/2022 Clyde Laforge | Paying Off Technical Debt of SoC Code-Bases 26



Vivado build: Structure

11/23/2022 Clyde Laforge | Paying Off Technical Debt of SoC Code-Bases 27



Vivado build: Dependencies

11/23/2022 Clyde Laforge | Paying Off Technical Debt of SoC Code-Bases 28



• Source files cannot be added blindly to the project: collision if generated files arepresent in the source directory
• List all source files explicitly

• Vivado's synthesis can fail without resulting in a non-zero error code
• Use if clause with `get_property PROGRESS [get_runs synth_1]] != "100%"`

• Each vivado run produces many files which are usually not wanted.
• Disable them by using `vivado -nolog -nojournal -notrace [...]`.

• Vivado takes time to launch
• Reduce the number of steps

Vivado build: gotchas

11/23/2022 Clyde Laforge | Paying Off Technical Debt of SoC Code-Bases 29



• A good technical debt is a managed technical debt
• No easy solution to paying it off

• GNU Autotools: Configuration/Software dependency checking
• vhdl-style-guide: style checking
• Make+tcl+vivado: text-based build

Conclusion

11/23/2022 30Clyde Laforge | Paying Off Technical Debt of SoC Code-Bases



Bonus Round

11/23/2022 Clyde Laforge | Paying Off Technical Debt of SoC Code-Bases 31



• Develop in a separate branch
• Do not consider work done as long it is not merged back to main
• Commits should be focused on a single purpose and include the minimum amount ofmodifications
• Use many small commits during development
• Clean up commit history using “git rebase -i” at the end of feature development
• Write meaningful commit messages: one-line summary followed by sh

Git

11/23/2022 Clyde Laforge | Paying Off Technical Debt of SoC Code-Bases 32

https://www.atlassian.com/git/tutorials/rewriting-history/git-rebase


• Ideas and advice on directory structure of code base
• Written for C++, but valuable in any case

Pitchfork project

11/23/2022 Clyde Laforge | Paying Off Technical Debt of SoC Code-Bases 33

https://api.csswg.org/bikeshed/?force=1&url=https://raw.githubusercontent.com/vector-of-bool/pitchfork/develop/data/spec.bs


• My one hour build failed at the end due to a typo
• Use vivado’s “check_syntax” before building
• Command is not well-behaved, so post processing may be necessary

• Track files and not stages in make files
• Use “git status —ignored” to see if “make clean” does its job correctly

Building

11/23/2022 Clyde Laforge | Paying Off Technical Debt of SoC Code-Bases 34



home.cern


