CEEW
\

N/ S

Paying Off Technical Debt of SoC
Code-Bases Through Standards and

Good Practices

Clyde Laforge, Hamza Boukabache, CROME Team
23 November 2022

Disclaimer

 Many possible solutions

o Simplifications were made

 Don't hesitate to ask questions during of after the presentation: clyde.laforge@cern.ch

11/23/2022 Clyde Laforge | Paying Off Technical Debt of SoC Code-Bases

Goals

« Present concept of technical debt

* Present tools and methods used in the CROME project keeping it in check

11/23/2022 Clyde Laforge | Paying Off Technical Debt of SoC Code-Bases

Technical Debt

11/23/2022 Clyde Laforge | Paying Off Technical Debt of SoC Code-Bases

Technical Debt

In software development, technical debt [. . . | is the implied cost
of additional rework caused by choosing an easy (limited) solution

now instead of using a better approach that would take longer.

T COULD RESTRUCTURE | | EH, SCREW GOOD PRACTICE.
THE PROGRAMS FLOW | | HOW BAD CAN IT BE?

OR ljSE ONE LITTLE goto main-sub3;
GOTD" INSTEAD. o

\
;) & *COMPILE*

11/23/2022 Clyde Laforge | Paying Off Technical Debt of SoC Code-Bases

©xked

Technical Debt: continued

HOW LONG (AN YOU \WORK ON MAKING A ROUTINE. TASK MORE
EFFICIENT BEFORE YOURE SPENDING MORE TiME THAN YOU SAVE?

(ACRDSS FIVE YEARS)
Causes:
[HOW OFTEN YOU DO THE TRSK ,
« Unexpected evolution of the project _ oer Yoar DALY WEEKLY MONFLY YEARY
- o 1 sexonD | [T 0 | 210085 | i | vmebres | v | secios
* Time constraints
5 SEONDS EDH!E 12 HOURS | 2 HOURS HINZU"TEE) M|M§1'E5 SEE%%S
« Lack of oversight 30 SECONDS | 1 ey [3] DAYS | 12 ouks | 2 woues | 3O | 2
Conseqguences
e Shorter time to market
* Hinders further development
* Incurs interests

11/23/2022 Clyde Laforge | Paying Off Technical Debt of SoC Code-Bases

Identification and Solutions to Technical Debt

|dentification:
 Qutdated documentation
« Band-aid bugfixes

« Parallel development

Solution:

* Re-factoring

11/23/2022 Clyde Laforge | Paying Off Technical Debt of SoC Code-Bases

”, Rac?ble

CROME Project

Plastic Air filled ionization

T

P o

CERN Radiation Monitoring Electronics (CROME) el <
. . ;’ Radiation %

Two configurations : #7 Monitoring and =
,, ,/’ 5:1?tcsessing %

Conceptual view of CROME at CERN ,/' g
W

=

©)

@

)

L~ 2/
= 4

CROME Junction Box

-

High Radiation Area Low Radiation Area

Uninterruptible Power Supply
Includes a battery for continuous
operation

11/23/2022 Clyde Laforge | Paying Off Technical Debt of SoC Code-Bases

CROM E PrOjECt SoC Number of Lines of Code (Without CROMiX)

Acquisition BN Code added in 2016
i1 TH Code added in 2017
B Code added in 2018

l ll Code added in 2019
80D00; Code added in 2020

- Code added in 2021
W Code added in 2022

Supervision

x200 Parameters
x8 measurement
channels

36 Millions of possible 70000 -
combinations

Interlocks

Alarm Units 60000 -
communication

Linux Operating Safety Critical part :

System : + Measurement algorithms
Data storage and + Real Time temperature compensation
management . 50000 -
Supervision » Dose rate calculations o)
= Cumulated dose calculation e
* Interlock generation =
o s s
(%]
9]
1§ J £ 40000 -
30000 -
20000 -
10000 -
0-

2023

11/23/2022 Clyde Laforge | Paying Off Technical Debt of SoC Code-Bases

Issues In CROME

11/23/2022 Clyde Laforge | Paying Off Technical Debt of SoC Code-Bases

A tasteless cocktail

e What can | touch?

* Noisy commits

Going further: separate source and build
directories

e Reduces noise

* Build configurations

11/23/2022 Clyde Laforge | Paying Off Technical Debt of SoC Code-Bases

Configuration

*Conﬁguration‘
Y Y
Config files Config files

®)) — @) —
2 g Xo) 2 § ¥o)
Ie) n S Ie) n S
Q @] o Q @) o
¥o) O o re) O o

11/23/2022 Clyde Laforge | Paying Off Technical Debt of SoC Code-Bases

Code Style

« Uniformity = less mental load

startTxxDN <= '1' when wenxDI = '1'
else '0' when (syncLowCntxDP = syncLowDlyC)
else startTxxDP;

syncxDN <= '0' when (cpolG = 'O' and coreClkRexDP = '1' and startTxxDP = '1') else
'0' when (cpolG = '1' and coreClkFexDP = '1' and reqxDP = '0O') else
'1' when (syncLowCntxDP = 0 and cpolG = '0O') else
'1' when (syncLowCntNxDP = 0 and cpolG = '1') else

syncxDP;
startTxxDN <= '1' when wenxDI = '1l' else
'0' when syncLowCntxDP = syncLowDlyC else
atartIxxhP:

syncxDN <= 'O' when cpolG = 'O' and coreClkRexDP = '1' and startTxxDP = '1l' else
'0O' when cpolG = 'l1' and coreClkFexDP = 'l' and reqxDP = 'O' else
'1l' when syncLowCntxDP = 0 and cpolG = 'O' else
'l' when syncLowCntNxDP = 0 and cpolG = 'l1l' else
syncxDP;

11/23/2022 Clyde Laforge | Paying Off Technical Debt of SoC Code-Bases

Extras

* Vivado text base build

* Git guidelines

11/23/2022 Clyde Laforge | Paying Off Technical Debt of SoC Code-Bases

Configuration

11/23/2022 Clyde Laforge | Paying Off Technical Debt of SoC Code-Bases

Idea

-= configPkg.vhd.in
package configPkg is
constant triplication : std_logic := @TRIPLICATIONG;

e
end package configPkg;

$./someScript --enable-debug

-— configPkg.vhd

package configPkg is
constant triplication : std_logic := '0O';
—— Ll

end package configPkg;

11/23/2022 Clyde Laforge | Paying Off Technical Debt of SoC Code-Bases

GNU Autotools

command-line options

Autotools
> my_sources. XXX

my_sources.XXX.in

build environment

« Good support
* Very powerful

« Support for software dependency checking

11/23/2022 Clyde Laforge | Paying Off Technical Debt of SoC Code-Bases

https://www.gnu.org/software/automake/manual/html_node/Autotools-Introduction.html

GNU Autotools: Steps

1. Replace configuration dependent values by @MY_VARIABLEQ
2. Rename and add . in suffix at the end of the filename
3. Write configure.ac file

4. Enjoy

11/23/2022 Clyde Laforge | Paying Off Technical Debt of SoC Code-Bases

GNU Autotools: Example

== configPkg.vhd. in
package configPkg is
constant frontend_ion : std_logic := QFRONTENDQ;

= L.
end package configPkg;

configure.ac
AC_INIT([CMPU_hw], [CMPU_VERSION], [CROME-Support@cern.ch])

AC_ARG_ENABLE([frontend],
[AS_HELP_STRING([--enable-frontend[=ion/neutron]],
[selects the frontend (default is iomn)])])

AS TF([test "x$enable frontend" == xion], [AC_SUBST ([FRONTEND], ’1°)],
[test "x$enable_frontend" == xneutron], [AC_SUBST([FRONTEND], ’0’)],
[echo "No frontend specified, defaulting to ionization chamber"
AC_SUBST ([FRONTEND], ’1°)])

AC_CONFIG_FILES([configPkg.vhd])
AC_OUTPUT

11/23/2022 Clyde Laforge | Paying Off Technical Debt of SoC Code-Bases

GNU Autotools: Example — User interface

$ autoreconf -i . # Creates configure from configure.ac
$./configure --enable-frontend=ion
—

$ cat configPkg.vhd
package configPkg is
constant frontend_ion : std_logic := '1';

== Lx »l
end package configPkg;

$ autoreconf

$./configure --enable-frontend=neutron

[...]

$ cat configPkg.vhd

package configPkg is
constant frontend_ion : std_logic := '0';
== ...

end package configPkg;

11/23/2022 Clyde Laforge | Paying Off Technical Debt of SoC Code-Bases

Live Demo!

11/23/2022 Clyde Laforge | Paying Off Technical Debt of SoC Code-Bases

Code style

11/23/2022 Clyde Laforge | Paying Off Technical Debt of SoC Code-Bases

vhdl-style-guide

e Open source
« Can fix code automatically
* Many options with good documentation

o Supports Cl-friendly formats

11/23/2022 Clyde Laforge | Paying Off Technical Debt of SoC Code-Bases

https://vhdl-style-guide.readthedocs.io/en/latest/

Cl implementation

Makefile.in
lint: $(VHDL_SOURCES)
vsg -f $(VHDL_SOURCES) -c linting/lintRules.yaml \
--junit linting/lint_junit.xml \
--quality_report linting/lint_quality_report.xml

.gitlab-ci.yml
check_linting:
stage: |
image:
script:
artifacts:
reports:
junit: ing/lin
codequality: 1tin

11/23/2022 Clyde Laforge | Paying Off Technical Debt of SoC Code-Bases

Vivado text-base build

11/23/2022 Clyde Laforge | Paying Off Technical Debt of SoC Code-Bases

Vivado Build

* make centered workflow
* Clintegration
 Reduce number of entry points

 Dynamic generation of project
» Straightforward to version control
* Reproducible

o Compatibility with GUI
» Usage of project mode
 Work taken by the tool

11/23/2022 Clyde Laforge | Paying Off Technical Debt of SoC Code-Bases

Vivado build: Structure

@7\

"
mare VIVADO? ~ + 7} tel script

files |=

11/23/2022 Clyde Laforge | Paying Off Technical Debt of SoC Code-Bases

Vivado build: Dependencies

block diagrams
t\\\\MCROMExpr

|Ps

» COSIM

external 1O e
@synth

PS/PL 1O o

» Check_syntax

vhdl source

11/23/2022 Clyde Laforge | Paying Off Technical Debt of SoC Code-Bases

Vivado build: gotchas

Source files cannot be added blindly to the project: collision if generated files are
present in the source directory

« List all source files explicitly

Vivado's synthesis can fail without resulting in a non-zero error code
e Use If clause with " get_property PROGRESS [get_runs synth_1]] != "100%"

Each vivado run produces many files which are usually not wanted.

N\

» Disable them by using vivado -nolog —-nojournal -notrace [...].

Vivado takes time to launch
* Reduce the number of steps

11/23/2022 Clyde Laforge | Paying Off Technical Debt of SoC Code-Bases

Conclusion

A good technical debt is a managed technical debt

 No easy solution to paying it off

 GNU Autotools: Configuration/Software dependency checking
» vhdl-style-guide: style checking

« Make+tcl+vivado: text-based build

11/23/2022 Clyde Laforge | Paying Off Technical Debt of SoC Code-Bases

Bonus Round

11/23/2022 Clyde Laforge | Paying Off Technical Debt of SoC Code-Bases

Git

* Develop in a separate branch
* Do not consider work done as long it is not merged back to main

 Commits should be focused on a single purpose and include the minimum amount of
modifications

* Use many small commits during development

o Clean up commit history using “git rebase —i" at the end of feature development

* Write meaningful commit messages: one-line summary followed by sh

11/23/2022 Clyde Laforge | Paying Off Technical Debt of SoC Code-Bases

https://www.atlassian.com/git/tutorials/rewriting-history/git-rebase

Pitchfork project

» Ideas and advice on directory structure of code base

« Written for C++, but valuable in any case

11/23/2022 Clyde Laforge | Paying Off Technical Debt of SoC Code-Bases

https://api.csswg.org/bikeshed/?force=1&url=https://raw.githubusercontent.com/vector-of-bool/pitchfork/develop/data/spec.bs

Building

My one hour build failed at the end due to a typo
e Use vivado’s “check_syntax” before building
« Command is not well-behaved, so post processing may be necessary

* Track files and not stages in make files

e Use “git status -—-ignored” to see If “make clean” does its job correctly

11/23/2022 Clyde Laforge | Paying Off Technical Debt of SoC Code-Bases

eeeeeeeee

