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Disclaimer

 Many possible solutions

o Simplifications were made

 Don't hesitate to ask questions during of after the presentation: clyde.laforge@cern.ch
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Goals

« Present concept of technical debt

* Present tools and methods used in the CROME project keeping it in check
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Technical Debt
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Technical Debt

In software development, technical debt [. . . | is the implied cost
of additional rework caused by choosing an easy (limited) solution

now instead of using a better approach that would take longer.

T COULD RESTRUCTURE | | EH, SCREW GOOD PRACTICE.
THE PROGRAMS FLOW | | HOW BAD CAN IT BE?

OR ljSE ONE LITTLE goto main-sub3;
GOTD" INSTEAD. o

\
; ) & *COMPILE*
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Technical Debt: continued

HOW LONG (AN YOU \WORK ON MAKING A ROUTINE. TASK MORE
EFFICIENT BEFORE YOURE SPENDING MORE TiME THAN YOU SAVE?

(ACRDSS FIVE YEARS)
Causes:
[ HOW OFTEN YOU DO THE TRSK ,
« Unexpected evolution of the project _ oer Yoar DALY WEEKLY MONFLY YEARY
- o 1 sexonD | [T 0 | 210085 | i | vmebres | v | secios
* Time constraints
5 SEONDS EDH!E 12 HOURS | 2 HOURS HINZU"TEE) M|M§1'E5 SEE%%S
« Lack of oversight 30 SECONDS | 1 ey [ 3] DAYS | 12 ouks | 2 woues | 3O | 2
Conseqguences
e Shorter time to market
* Hinders further development
* Incurs interests
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Identification and Solutions to Technical Debt

|dentification:
 Qutdated documentation
« Band-aid bugfixes

« Parallel development

Solution:

* Re-factoring
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CROME Project
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Uninterruptible Power Supply
Includes a battery for continuous
operation
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CROM E PrOjECt SoC Number of Lines of Code (Without CROMiX)
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Issues In CROME
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A tasteless cocktail

e What can | touch?

* Noisy commits

Going further: separate source and build
directories

e Reduces noise

* Build configurations
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Configuration

*Conﬁguration‘
Y Y
Config files Config files
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Code Style

« Uniformity = less mental load

startTxxDN <= '1' when wenxDI = '1'
else '0' when (syncLowCntxDP = syncLowDlyC)
else startTxxDP;

syncxDN <= '0' when (cpolG = 'O' and coreClkRexDP = '1' and startTxxDP = '1') else
'0' when (cpolG = '1' and coreClkFexDP = '1' and reqxDP = '0O') else
'1' when (syncLowCntxDP = 0 and cpolG = '0O') else
'1' when (syncLowCntNxDP = 0 and cpolG = '1') else

syncxDP;
startTxxDN <= '1' when wenxDI = '1l' else
'0' when syncLowCntxDP = syncLowDlyC else
atartIxxhP:

syncxDN <= 'O' when cpolG = 'O' and coreClkRexDP = '1' and startTxxDP = '1l' else
'0O' when cpolG = 'l1' and coreClkFexDP = 'l' and reqxDP = 'O' else
'1l' when syncLowCntxDP = 0 and cpolG = 'O' else
'l' when syncLowCntNxDP = 0 and cpolG = 'l1l' else
syncxDP;
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Extras

* Vivado text base build

* Git guidelines
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Configuration
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Idea

-= configPkg.vhd.in
package configPkg is
constant triplication : std_logic := @TRIPLICATIONG;

e
end package configPkg;

$ ./someScript --enable-debug

-— configPkg.vhd

package configPkg is
constant triplication : std_logic := '0O';
—— Ll

end package configPkg;
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GNU Autotools

command-line options

Autotools
> my_sources. XXX

my_sources.XXX.in

build environment

« Good support
* Very powerful

« Support for software dependency checking
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https://www.gnu.org/software/automake/manual/html_node/Autotools-Introduction.html

GNU Autotools: Steps

1. Replace configuration dependent values by @MY_VARIABLEQ
2. Rename and add . in suffix at the end of the filename
3. Write configure.ac file

4. Enjoy
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GNU Autotools: Example

== configPkg.vhd. in
package configPkg is
constant frontend_ion : std_logic := QFRONTENDQ;

= L.
end package configPkg;

# configure.ac
AC_INIT([CMPU_hw], [CMPU_VERSION], [CROME-Support@cern.ch])

AC_ARG_ENABLE([frontend],
[AS_HELP_STRING([--enable-frontend[=ion/neutron]],
[selects the frontend (default is iomn)]) ])

AS TF([test "x$enable frontend" == xion], [AC_SUBST ( [FRONTEND], ’1°)],
[test "x$enable_frontend" == xneutron], [AC_SUBST([FRONTEND], ’0’)],
[echo "No frontend specified, defaulting to ionization chamber"
AC_SUBST ( [FRONTEND], ’1°)])

AC_CONFIG_FILES([configPkg.vhd])
AC_OUTPUT
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GNU Autotools: Example — User interface

$ autoreconf -i . # Creates configure from configure.ac
$ ./configure --enable-frontend=ion
—

$ cat configPkg.vhd
package configPkg is
constant frontend_ion : std_logic := '1';

== Lx »l
end package configPkg;

$ autoreconf

$ ./configure --enable-frontend=neutron

[...]

$ cat configPkg.vhd

package configPkg is
constant frontend_ion : std_logic := '0';
== ...

end package configPkg;
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Live Demo!
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Code style
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vhdl-style-guide

e Open source
« Can fix code automatically
* Many options with good documentation

o Supports Cl-friendly formats
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https://vhdl-style-guide.readthedocs.io/en/latest/

Cl implementation

# Makefile.in
lint: $(VHDL_SOURCES)
vsg -f $(VHDL_SOURCES) -c linting/lintRules.yaml \
--junit linting/lint_junit.xml \
--quality_report linting/lint_quality_report.xml

# .gitlab-ci.yml
check_linting:
stage: |
image:
script:
artifacts:
reports:
junit: ing/lin
codequality: 1tin
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Vivado text-base build
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Vivado Build

* make centered workflow
* Clintegration
 Reduce number of entry points

 Dynamic generation of project
» Straightforward to version control
* Reproducible

o Compatibility with GUI
» Usage of project mode
 Work taken by the tool
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Vivado build: Structure

@7\

"
mare VIVADO? ~ + 7} tel script

files |=
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Vivado build: Dependencies

block diagrams
t\\\\MCROMExpr

|Ps

» COSIM

external 1O e
@synth

PS/PL 1O o

» Check_syntax

vhdl source
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Vivado build: gotchas

Source files cannot be added blindly to the project: collision if generated files are
present in the source directory

« List all source files explicitly

Vivado's synthesis can fail without resulting in a non-zero error code
e Use If clause with " get_property PROGRESS [get_runs synth_1]] != "100%"

Each vivado run produces many files which are usually not wanted.

N\

» Disable them by using vivado -nolog —-nojournal -notrace [...].

Vivado takes time to launch
* Reduce the number of steps
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Conclusion

A good technical debt is a managed technical debt

 No easy solution to paying it off

 GNU Autotools: Configuration/Software dependency checking
» vhdl-style-guide: style checking

« Make+tcl+vivado: text-based build
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Bonus Round
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Git

* Develop in a separate branch
* Do not consider work done as long it is not merged back to main

 Commits should be focused on a single purpose and include the minimum amount of
modifications

* Use many small commits during development

o Clean up commit history using “git rebase —i" at the end of feature development

* Write meaningful commit messages: one-line summary followed by sh
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https://www.atlassian.com/git/tutorials/rewriting-history/git-rebase

Pitchfork project

» Ideas and advice on directory structure of code base

« Written for C++, but valuable in any case
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https://api.csswg.org/bikeshed/?force=1&url=https://raw.githubusercontent.com/vector-of-bool/pitchfork/develop/data/spec.bs

Building

My one hour build failed at the end due to a typo
e Use vivado’s “check_syntax” before building
« Command is not well-behaved, so post processing may be necessary

* Track files and not stages in make files

e Use “git status -—-ignored” to see If “make clean” does its job correctly
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