

2

Hardware/Software Co-Design
with Gitlab CI
CROME: CERN RadiatiOn Monitoring Electronics

Amitabh Yadav, Hamza Boukabache, CROME Team

SoC Interest Group Meeting

23/11/2022

Reference: https://codimd.web.cern.ch/s/7VHssRXbY#

amitabh.yadav@cern.ch

https://codimd.web.cern.ch/s/7VHssRXbY

Agenda

• Gitlab CI - what and why?

• CI and Docker Overview

• CROME CI Pipeline

• Key Features – Dependencies and CI Special Variables

• Building Xilinx Petalinux Image through CI

• Future Steps – Verification and Continuous Deployment.

23/11/2022 Amitabh Yadav, amitabh.yadav@cern.ch 3

Continuous Integration (CI)

23/11/2022 Amitabh Yadav, amitabh.yadav@cern.ch 4

Gitlab CI - what and why?

Continuous Integration (CI) is the practice of
continuously integrating and verifying the code
changes automatically through CI pipelines.

23/11/2022 Amitabh Yadav, amitabh.yadav@cern.ch 5

Gitlab CI - what and why?

Advantages:

• Ensures successful HW and SW build/compilation.

• Automatic code quality and performance testing.

• Early detection of errors, bug tracking, reduced
integration problems, and faster deployment.

• Reproducible builds using Docker containers [1]

• Code packaging and deployment.

23/11/2022 Amitabh Yadav, amitabh.yadav@cern.ch 6

[1] SY-EPC-CCE Gitlab container-registry: https://gitlab.cern.ch/cce/docker_build/container_registry

Continuous Integration (CI) is the practice of
continuously integrating and verifying the code
changes automatically through CI pipelines.

https://gitlab.cern.ch/cce/docker_build/container_registry

CI Pipeline

• CI Pipeline:

• A pipeline is a sequence of scripted steps that will be executed on
the code in repository.

• The steps are defined in the file .gitlab-ci.yml and is placed in
the root of the project repository.

• Gitlab detects the YAML file and initiates the GitlabCI script.

• No modifications to the project repository.

• At the end, any new files/outputs created during the process of
execution of a CI script are called artifacts.

23/11/2022 Amitabh Yadav, amitabh.yadav@cern.ch 7

Image source: docs.gitlab.com

CI Pipeline - continued

• CI pipeline components - Jobs and Stages:

• A pipeline is composed of independent jobs that execute scripts.

• Jobs are grouped into stages.

• Stages run in sequential order, but jobs within stages run in
parallel.

• Artifacts:

• Archive of generated output files and directories.

• Accessible through GitLab UI or the API.

23/11/2022 Amitabh Yadav, amitabh.yadav@cern.ch 8

Image source: docs.gitlab.com

Gitlab CI Workflow

23/11/2022 Amitabh Yadav, amitabh.yadav@cern.ch 9

Image source: docs.gitlab.com

Gitlab CI Backend
• Gitlab Runner:

• Runners are computers/virtual machines where we Gitlab CI scripts get executed.

• For specialized/large software that require configurations of our own, we make use of CERN OpenStack virtual machine.

• For this we need to install a runner on the system and register it as a gitlab-runner for our repository.

23/11/2022 Amitabh Yadav, amitabh.yadav@cern.ch 10

https://docs.gitlab.com/runner/install/

https://docs.gitlab.com/runner/register/

https://docs.gitlab.com/runner/install/
https://docs.gitlab.com/runner/register/

23/11/2022 Amitabh Yadav, amitabh.yadav@cern.ch 11

An example CI Pipeline

An example CI Pipeline

23/11/2022 Amitabh Yadav, amitabh.yadav@cern.ch 12

An example CI Pipeline

23/11/2022 Amitabh Yadav, amitabh.yadav@cern.ch 13

An example CI Pipeline

23/11/2022 Amitabh Yadav, amitabh.yadav@cern.ch 14

An example CI Pipeline

23/11/2022 Amitabh Yadav, amitabh.yadav@cern.ch 15

An example CI Pipeline

23/11/2022 Amitabh Yadav, amitabh.yadav@cern.ch 16

In a simple .gitlab-ci.yml file, we define:

• The commands need to run in sequence (Stages) and those that need to

run in parallel (Jobs).

• The scripts that need to be run.

• before_script, after_script and variables.

• Artifacts: the built files that needs to be saved.

• Specification of whether to run the scripts automatically or

trigger manually.

• Specification on which specific branch the pipeline should be executed

automatically.

Docker Executor

The Docker executor divides the job into multiple steps:

• Prepare: Create and start the services.

• Pre-job*: Clone, restore cache and download artifacts from previous stages.

• Job: User build. This is run on the user-provided Docker image.

• Post-job*: Create cache, upload artifacts to GitLab.

*pre-job and post-job are run on a special docker container based on Alpine Linux.

Prebuilt docker images for Vivado, Petalinux, QuestaSim, ModelSim, Doxygen etc. are available through Gitlab
Container Registry at SY-EPC-CCE's repository[1]

[1] SY-EPC-CCE Gitlab container-registry: https://gitlab.cern.ch/cce/docker_build/container_registry

23/11/2022 Amitabh Yadav, amitabh.yadav@cern.ch 17

Using image keyword executes the CI jobs in Docker containers.

https://gitlab.cern.ch/cce/docker_build/container_registry

23/11/2022 Amitabh Yadav, amitabh.yadav@cern.ch 18

CROME CI Pipeline

23/11/2022 Amitabh Yadav, amitabh.yadav@cern.ch 19

CROME CI Pipeline

merge request pipelines runs when a merge request is open for the branch.

dictates pipeline behaviou r

23/11/2022 Amitabh Yadav, amitabh.yadav@cern.ch 20

CROME CI Pipeline: Syntax Check and Linting

dictates pipeline behaviou r

before_script: use for initial setup of docker container and resolve missing dependencies.
Upon final testing this can be packaged in the original docker image.

CROME CI Pipeline: Syntax Check and Linting

23/11/2022 Amitabh Yadav, amitabh.yadav@cern.ch 21

allow_failure:allows for a CI
job to fail and continue
executing the pipeline.

artifacts:built files and
executables that are passed
on to the next job.

CROME CI Pipeline: Build Stage

23/11/2022 Amitabh Yadav, amitabh.yadav@cern.ch 22

CROME CI Pipeline: Build Stage

23/11/2022 Amitabh Yadav, amitabh.yadav@cern.ch 23

Key Features

needs is used needs to execute jobs out-of-order.

23/11/2022 Amitabh Yadav, amitabh.yadav@cern.ch 24

Key Features

23/11/2022 Amitabh Yadav, amitabh.yadav@cern.ch 25

needs is used needs to execute jobs out-of-order.

variables can be defined in .gitlab-ci.yml or in the project settings. They can be made
global or local to a job and are used in similar way as shell variables.

Key Features

23/11/2022 Amitabh Yadav, amitabh.yadav@cern.ch 26

needs is used needs to execute jobs out-of-order.

variables can be defined in .gitlab-ci.yml or in the project settings. They can be made
global or local to a job and are used in similar way as shell variables.

when is used within a job to specify if the job needs manual intervention to start.

- Stages such as formal_verification for license availability reasons.

- Linux image build.

CROME CI Pipeline: Artifacts

23/11/2022 Amitabh Yadav, amitabh.yadav@cern.ch 27

Building Linux Images through Gitlab CI

• Currently testing: Building of Embedded
Linux Image alongwith bit bake bootscript
applications.

23/11/2022 Amitabh Yadav, amitabh.yadav@cern.ch 28

*in development

Building Linux Images through Gitlab CI

• Currently testing: Building of Embedded
Linux Image alongwith bit bake bootscript
applications.

• kernel and hw configuration through
-–silentconfig option on Xilinx/Petalinux
2021.2

23/11/2022 Amitabh Yadav, amitabh.yadav@cern.ch 29

*in development

Conclusion

In the works is Gitlab CI for:

• Formal Verification scripts to be added to the CI pipelines to

be executed automatically.

• Continuous Deployment through gitlab-runner through ssh

into devices.

23/11/2022 Amitabh Yadav, amitabh.yadav@cern.ch 30

• CI can be efficiently adopted for heterogeneous

development for SoCs.

• We have currently deployed Gitlab CI in

development branch is currently used for HDL

linting using vsg docker image.

• Gitlab CI is proving elemental during migration of

our Xilinx HDL codebase + IPs from version 2018.1

to 2021.2

• Has helped in resolving dependency issues through

GNU Autotools and Docker containers to execute

CI jobs.

