AMS-100

A Magnetic Spectrometer with an acceptance of 100 m² sr in Space

Nuclear Inst. and Methods in Physics Research, A 944 (2019) 162561

S. Schael, RWTH Aachen University

5m x 4m x 3m 7 tons

Radiators

We have to start now to work on the next generation magnetic spectrometer in space !

TRD

TOF 1,

TOF 3,

RICH

ECAL

Magnet

It took 600 Physicists and Engineers from 16 Countries and 60 Institutes 17 years to construct the Alpha Magnetic Spectrometer.

300,000 electronic channels

Silicon layer

7 Silicon layers

11,000 Photo Sensors Silicon layer

- The cosmic ray flux follows a power law $\Phi \approx C E^{-3}$
- An increase in energy by a factor 10 requires an increase in acceptance by 1000. AMS-02 weights 7 tons.
- Both PAMELA and AMS-02 have a telescope like geometry.
- Just scaling such a geometry does not allow to increase the energy reach by a factor 10 and simultaneously the acceptance by a factor 1000.

Sun

- A thin solenoid provides a magnetic field of 0.5 Tesla.
- The solenoid is operated at 60 K behind the sunshield in thermal equilibrium with the environment.

150 million km

- A compensation coil balances the magnetic dipole moment of the solenoid.
- The solenoid is instrumented on the inside with a silicon tracker and a calorimeter system.

AMS-100

40 K

358 K

Moon

1.5 million km

Earth

Sunshield d=15m (49 ft)

Silicon Tracker

L=6m (20 ft)

Service Module

L2

Solar Panels

Solenoid d=4m (13 ft) 0.5 Tesla

Electric Propulsion

Weight **40** t

Compensation Coil, d=8m (26 ft)

The Expedition to Lagrange Point 2 **Vehicle and Launch:**

- Target launch year: ~2035. \bigcirc
- Operational for 10+ years. \bigcirc
- Total estimated mass of AMS-100: 40 Tons \bigcirc
 - ~4 Tons for the magnet system,
 - ~16 Tons of detector equipment,
 - ~20 Tons of auxiliary equipment and cabling.
- Launched with SpaceX's Starship rocket. \bigcirc

Starship's 8 m (26 ft) diameter payload dynamic envelope

SpaceX

- orbit.

In 2019, the cost per launch for Starship was estimated by SpaceX to be as low as US\$2 million. Elon Musk has said in 2020 that, with a high flight rate, they could potentially go even lower, with a fully-burdened marginal cost on the order of US\$10 per kilogram of payload launched to low Earth

17 m

8 m

ARCHITECTURE | MODELS

THERMAL DESIGN | HEAT SOURCES

- **Inner detector**
 - ~8000 W
- Solenoids
 - ~15 W

AMS-100: Structural Model

AMS-100: Thermal Model

Sun

• A thin solenoid provides a magnetic field of 0.5 Tesla.

• The solenoid is operated at 60 K behind the sunshield in thermal equilibrium with the environment.

150 million km

- A compensation coil balances the magnetic dipole moment of the solenoid.
- The solenoid is instrumented on the inside with a silicon tracker and a calorimeter system.

AMS-100

40 K

358 K

Moon

1.5 million km

Earth

Sunshield d=15m (49 ft)

Silicon Tracker

L=6m (20 ft)

Service Module

L2

Solar Panels

Solenoid d=4m (13 ft) 0.5 Tesla

Electric Propulsion

Weight **40** t

Compensation Coil, d=8m (26 ft)

Commonwealth Fusion Systems (CFS)

16 HTS coils

	SPARC	AMS-100
B-Field	20 Tesla	0.5 Tesla
Temperature	20 K	55 K
lop	40 kA	10 kA
Stored Energy	110 MJ	14 MJ
HTS Length	270 km	85 km

AMS-100: A Magnetic Spectrometer

Coil radius Coil length Tape widtl Stabilizer Cable thickn Cable widt Layers Turns Inductance Number of ta Total tape ler **Operating cur** Cable mas Stored Ener **Energy Dens**

*Considering only the mass of the cable.

Table of properties for the AMS-100 main solenoid and compensation coil.

	<u>Main</u>	<u>Compensation</u>	<u>Combined</u>	U
S	2.0	4.0		r
h	6.0	1.5		r
h	12	12		
-	Al-6063	Al-6063		
ess	2.85	2.85		m
h	16	16		
	1	1		
	376	94		
е	286	114	287	m
apes	18	18		
ngth	85	43	128	k
rrent	10.0	-10.0		k
S	1090	545	1635	k
ſgy	14.3	5.7	14.4	Ν
sity*	14	11	9	<u>₁k</u> J,

Self-Protected High-Temperature Superconducting Demonstrator Magnet for Particle Detectors

Joep L. Van den Eijnden^{1,2},* Anna K. Vaskuri¹, Benoit Curé¹, Alexey Dudarev¹, and Matthias Mentink¹ ¹CERN, 1211 Geneva 23, Switzerland ²Eindhoven University of Technology, Groene Loper 3, 5612 AE Eindhoven, The Netherlands

peak field on the conductor is 1.2 T

1mm =2 pt

AMS-100

8%		

14

Simulated Quench Behavior and Survival

428 turn main solenoid, I_{op} = 13.5 kA, B = 1 T. t = 0.2428 s

Simulations indicate that the main solenoid is thermally self-protected. Peak hot-spot near extremities NZPV of ~ 4-8 m/s

Temperature

T. Mulder, CERN

t = 0.2428 s

Current

Mechanical Quench Analyses

- Shell model set-up in Abaqus to calculate stress Ribs locally reduce the stress in the conductor. in the HTS, Al-alloy conductor and structural Stress in the conductor due to thermal gradients not components. critical, strength of the epoxy to be validated Model includes the conductor, ribs and stringers. experimentally.
- Stress in the conductor is almost tripled during a Peak stress (~300 MPa) caused by radial Lorentz force. quench due to enormous induced current. Support structure requires optimization.

J. Zimmermann & D. Pridöhl, RWTH Aachen

Boundary condition: outer rings fixed to circular shape, free thermal shrinkage

Readout-Channels: 8 10⁶ 100 m² sr Acceptance:

AMS-100 will measure light Nuclei in Cosmic Rays up to the maximum energy that can be reached by cosmic ray accelerators in our galaxy.

18

Anti-Deuterons are a very sensitive probe for New Physics in Cosmic Rays

As a Magnetic Spectrometer AMS-100 can separate Anti-Matter from Matter.

Anti-Helium in Cosmic Rays

E. Carlson et al., 2014, Phys. Rev. D 89, 076005
M. Cirelli et al., 2014, JHEP 1408, 009
A. Coogan and S. Profumo, 2017, Phys. Rev. D 96, 083020

Angular Resolution for Converted Photons

Crab Nebula with Chandra (blue and white), Hubble (purple), and Spitzer (pink) data.

FERMI, CTA

AMS-100

CRAB Nebula TeV - Photons

5m x 4m x 3m

- take data for the lifetime of the ISS. It is a unique scientific instrument in Space.
- completely new territory in precision cosmic ray physics.

 AMS-02 has collected more than 200 Billion cosmic rays since 2011 and will continue to • AMS-100 will improve the sensitivity of AMS-02 by a factor 1000 and will explore a

24