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DAMPE: satellite mission launched by the Chinese Academy of Science in Dec. 17, 2015

= |nternational collaboration of Chinese, Swiss, Italian institutes Dec. 17, 2015
= CERN Recognized Experiment since March 2014
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DAMPE: calorimetric detector for GeV — PeV cosmic ray direct detection

Plastic Scintillator Detector (PSD)

UniGE
INEN 2 Silicon-Tungsten Tracker (STK)

IHEP _
BGO Calorimeter (BGO)

Neutron Detector (NUD)

v’ Thick imaging calorimeter (BGO of 32 X, )

v' Precise tracking with Si strip detectors (STK) Detection of GeV — 10 TeV e/y and GeV - PeV
v Tungsten photon converters in tracker (STK) ) nuclei with excellent particle identification,
v Charge (2) measurements (PSD and STK) energy resolution and direction reconstruction

v Extra hadron rejection (NUD)
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DAMPE detector has been fully calibrated at CERN before launch

= Several weeks at CERN PS and SPS beams from Oct. 2012 — Nov. 2015 (EQM)

= Critical contribution to the (continuing) important science output of the mission!
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The DAMPE payload and satellite

Weight : 1450/1850 kg (payload/satellite)
Power: 300/500 W (payload/satellite)
Readout channels: 75,916 (STK 73,728)

Size:1.2mx1.2mx1.0m




Dec. 17 2015: launched!

Xin Wu

Altitude: 500 km
Inclination: 97.4065°
Period: 95 minutes

Orbit: sun-synchronous

2018:12-17 18:52:16.366 A Ba T ik 8 o % {3

Dec. 20, 2015: all detectors powered on, except the HV for PMTs
Dec. 24, 2015 : HV on!

Dec. 30, 2015: stable trigger condition
Stable and continuous data-taking since!



Number of events

Skimmed event count

DAMPE in excellent condition since launch, for more than 7 years!

Flight data - Daily event count

le7
0.8+ Daily event count
2016-01-01 to 2023-04-30
061 I égfclljliflslgﬁ'\ode

B i e s

2016-09-07

DAC calibration 2017-12-29

Ll ke 4

v "W'

0.4  <2016-02-01 L
UNB trigger off
<2016-03-25 2022-02-14
on-orbit testing GPS timing
2021-05-22 system failure
Payload powerof]
0.2 1 2022-12-12 to
2022-12-13
FPGA chip
failure
2023-03-17|
FPGA
0.0 T T T T I . r . failure
© g D ) Q N 0 >
e 29> 28> 29> il ol 2S¥ ol m
L ‘ ll . . . ,’
10° Fiducial skim
in 6 energy bins
10° 4 ! . —— 20-100 GeV
—— 100-250 GeV
= + —— 250-500 GeV
103 o — 0.5-1 TeV
l N o N S —— 1-5TeV
B M 4 adatei s dive i - el ettt Pl p AP — > 5TeV
1024
101 T T T T T T

N\

https://www.swpc.noaa.gov/products/solar-cycle-progression

| H
Sunspot number

150

100

} g.»-{ : . me// _\

[ i == s R A

e
R
o

I I N | O 0 1

50
| /
le /1
24 | | W\ \Qé/ L obs R
0 ! ‘"MLML ! —_—
[ [
2015 2020 2025 2030 2035
Universal Time
I . 1800 1500 0 2000
A nfAN \ A v AN NN ool I
A\ ,/\ \,’ |‘J ‘\_‘ \\f \. j\/ﬂ'\) \\}’ ‘\ _‘|‘ \‘\" “J‘\_}r\'\ J’-“U, \‘J’\\J \\’ U \\!—\'u’ \IJP\\_J \\].\f \‘\

+- Monthly Values Smoothed Monthly Values Predicted Values

Smooth data-taking besides a few isolated incidents

Daily: ~5M events, ~30 GB raw data
Live time ~76%

>13 billions events collected so far

Trigger rate dropping since 2021: solar activities

affecting only low energy (calibration) triggers
= >20 GeV event rates are are stable

DAMPE collects daily ~¥400 >1 TeV and ~30 >5 TeV well contained
events, possibly the largest sample of >TeV CR direct detection!



Major DAMPE publications: 2017-2022

[
250
nature
[0} A EES
< h%y. e 2017 @
b R 3RATY I T
T 150 SRRl LR 1%
o ;{}&o[ + &
¥ ??#;1% ] =
2 100 . DAMPE (this work) il 1
x H.E.S.S. (2008) t 1l 12
it H.E.S.S. (2009) ] ‘L { 1
50 —=— AMS-02 (2014) ‘ T‘y % 7
[ —¢— Fermi-LAT (2017) H ’
O_"" ool PR e B .V.H..l_
10 100 1,000 10,0
Energy (GeV)

et+e: 25 GeV —4.6 TeV

1.4 years of data

Spectral break at 1 TeV @ 6.6

20,000

18,000

16,000
14,0001
12,000
10,0001
8000}
6000
4000F

2000f;
10

- Science Advances
2019

—e— DAMPE

= AMS-02 (2015)
PAMELA (2011)

& ATIC-2 (2009)
CREAM | + 1l (2017)

—=— NUCLEON-KLEM (2018)

Flux x E27(m2sr's™ GeV'7)

Kinetic energy (GeV)

aaal n i 1 A s sl
10? 10° 10*

saaal]
10°

Proton : 40 GeV — 100 TeV

2.5 years of data

Softening at 14 TeV @ 4.7c

20,000

18,000

16,000
14,000

12,000F

10,000

8000 [
6000}
4000F

2000};

BIC flux ratio

Helium: 70 GeV — 80 TeV

4.5 years of data

Softening at 34 TeV @ 4.3c

R T B LR R v UL R 5
MPHYSICAL REVIEW LETTERS %
[ & B .
2021 Sl | |
—31\:0% e . A ! =
[ .oj;r:;;j ﬁ ‘ i 2]
—e— DAMPE )
= AMS-02 (2015) !
PAMELA (2011)
& ATIC-2 (2009)
CREAM | + 11 (2017)
—4— NUCLEON-KLEM (2018)
Ry g e
Kinetic energy (GeV)

0.30

0.20

0.10

0.08

0.06

o
o
=

0.03

0.02

TG
2022 ", |

o HEAO-C2

o CRN-SpacelLab2
ATIC-2 T s
CREAM-I ol T
TRACER
PAMELA

4 NUCLEON

o AMS-02

e DAMPE
Total (stat.+syst.) uncertainties
L 1

102 10°
Kinetic energy (GeV/n)

B/C: 10 GeV/n to 5.6 TeV/n

10

6 years of data

Hardening at 100 GeV/n @ 4.3c

The breaking of simple power laws observed at multiple places in the 100 GeV — 100 TeV range - rich underlying physics

To come: with > 7 years of data, more elaborated calibration and advanced analysis techniques:

e*+e™: beyond 10 TeV and
look for nearby sources/DM

proton up to 1 PeV, He up to 250
TeV/n with reduced systematics

Secondaries: Li, Be, B, ...
reaching 10 TeV/n

Primaries: C, O, Si, ...
reaching ~10 TeV/n

Xin Wu

DAMPE can measure deposited energy to a few 100 TeV so is able to measure particle energies to “PeV | s




Very recently submitted to PRL: p+He flux up to 316 TeV with 6 years of data

x10°
T p SRR it IOLARAA BB 7 e sl i il A A B IR B
e p+He direcl measuremenls -
.:E 50— *  ATIC (2008) - ':E x
& ik i CREAM-II (2017) 5 ‘.‘.> 2 SRR o -
8 [ 7 NUGLEON (KLEM; 2017) 8 o 10°1 wﬂ“' 6% 0 -
= 40~ &  DAMPE (this work) 2 X [ <,,__’.,‘f"} ]
N 30'_ o3 :" = p+lio Indirect me asurements %(l“ <
i w i LAS-TOP+MACHD [2004) l 4
B j 5 ARGO YBIWFCT (2015) )
Bk g 0 KASCADE QGSjet0! [2005)
- . 10° 5 KASCADL SIDYLL-Z1 (200%)
10 — #  DAMPF (this work)
o—ll.llll L1 e aaenl ol Ll - el vl el el vl v aal 2
107 10° 10° 10° 107 10° 10* 10° 10° 107
Primary energy (GeV) Primary energy (GaV)

Comparison with other direct measurements

Comparison with indirect measurements

= Linking the space-based direct measurements to the ground-based indirect experiments

= Hint of a second hardening at ~150 TeV

" |ndividual fluxes up to 1 PeV in progress

Xin Wu

= Focusing on reducing the dominant systematic error (up to 15%) related to the hadronic model,



95% C.L. upper limit of (o), (cm3s7?)

Photon analysis (the idea of an e/y/CR general-purpose detector works!)

= Thanks to the STK DAMPE is also an excellent high energy gamma-ray imager/spectrometer

6-year sky map
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Plastic Scintillator Detector (PSD)

= Strip staggered by 0.8 cm

A Single ldrge-Layer

2 layers (x, y) of bars 1 cm thick, 2.8 cm wide and 88.4 cm long
Sensitive area 82.5 cm x 82.5 cm, no dead zone

-

_—A

|| | N | [

25mm g 286mm . 20mm _

[

%

‘ Strip Type B

EI i I | i | N | B

|

Top Plane

Bottom Plane -

= Strip type A

Readout both ends with PMT, each uses 2 dynode signals

Xin Wu (factor ~40) to extend the dynamic range tocover Z2=1, 26 1,



PSD charge measurement, 2 years of data of 2016-2017, published in 2019
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= All the elements in cosmic rays from H to Fe, and Ni can be identified clearly

= Multiple calibration/correction steps are needed

= Pedestal calibration, PMT gain calibration, energy (MIP) calibration, alighnment of PSD, light attenuation
correction, guenching and equalization correction, and track finding

= A good PSD charge measurement involves both the PSD and the STK

“n'a  Need a precise track to find the right PSD bar, in particular at high energy with with multiple backsplash hits’



PSD charge measurement improved with ML tracking, 2 years of data of 2016-2017
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Combined PSD charge

= ML tracking improves track precision = improves PSD hit finding and corrections
= Allows to identify particles interacting in the PSD and efficiently remove them

= Also very useful for hadronic interaction model studies
= ML optimized separately for light (p, He) and heavier (Z>2) ions

Xin Wu

Astroparticle Physics
Volume 146, April 2023, 102795
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A deep learning method for the
trajectory reconstruction of cosmic
rays with the DAMPE mission

Andrii Tykhonov # & &, Andrii Kotenko 2, Paul Coppin 2, Maksym Deliyergiyev ?
, David Droz ?, Jennifer Maria Frieden b Chiara Perrina ®, Enzo Putti-Garcia
, Arshia Ruina 2, Mikhail Stolpovskiy 2, Xin Wu 2

Astropart. Phys., 146, 102795 (2023)
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PSD charge measurement stability: 2016 - 2022 yearly data overlayed

Xin Wu
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2016-2022 yearly data
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o

7 yearly histograms overlayed, not adjusted for live time!

Excellent stability: not only the charge measurements, but also the full chain of mission operation
Achieved thanks to the robust PSD calibration and STK alignment procedures running routinely
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Silicon Tungsten Tracker Converter (STK)

= 12 layers (6x, 6y) of single-sided Si strip
detector mounted on 7 support trays

= Tungsten plates (1mm thick) integrated in trays
2, 3, 4 (from the top)

— Total 0.85 X, for photon conversion

Si Layers X (top) ——_,
Si Layers Y (bottom) —"

Tungsten converter =1

= Quterenvelop 1.12m x 1.12m x 25.2cm
Detection area 76 x 76 cm?

768 silicon sensors 1,152 ASICs
95 x 95 x 0.32 mm?3 73,728 channels

~7 m? of silicon

192 ladders

Total weight: 154.8 Kg
Total power ~85W

Low power readout ASIC is a game changer!



STK in excellent condition since launch, for more than 7 years!
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&z (um)

STK mean temperature (“C)

STK in-flight alignment
up to May 2023
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Re-align every 2 weeks to track long term shift

In 7 years detector position shifts in z are within 100 pum,
< 1% of the support tray thickness Intrinsic position resolution 30 -40 pm, better than 70-100 um required

= STK is the “backbone” of experiment allowing to link precisely all the sub-detectors for
Xin Wu alignment, calibration, particle identification, event classification, ... 17



Nevts

STK p/He MIP measurement stability: 2016 - 2022 yearly data overlayed
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= 7 vyearly histograms overlayed, not adjusted for live time!
= Excellent stability: not only the charge measurements, but also the full chain of mission operation
= Achieved also thanks to the robust STK calibration and alignment procedures running routinely

= Higher charge calibration in progress

= More challenging due to readout ASIC nonlinearity and saturation

Xin Wu 18



stkEcore1Rm stkEcore1Rm

stkEcore1Rm

STK is also a pre-shower detector - contribution to electron identification
Electron MC, in 6 energy bins | L Proton MC, in 6 energy bins

0 E-EEI:ec:ir-;m;l-Mc .....

Te aTev-

2 2
10 10 stkClu1Rm 10 10 stkClu1Rm

2 2
10 10 stkClu1Rm 10 10 stkClu1Rm

=  Number of clusters and cluster energies within 1 Moliere Radius of the particle direction have
discrimination power between electrons and protons

= Used in a DNN classifier in addition to calorimeter shower shape variables

= DNN classifier (2) performs much better than the previous analytical classifier (C) based only on
Xin Wu shower shape variables ;
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=  With the continuously increasing data sample and better performing classifier, as well as a possible
increase of acceptance (¥60%) by adding larger angle events (“top fiducial”) with ML tracking, we are
extending the electron flux measurement towards ~20 TeV

Xin Wu

>9 million full fiducial electrons >20 GeV has already been collected

20



BGO Calorimeter

= J4-layer BGO, 7 x-layers + 7 y-layers
= BGO bar2.5cm X 2.5 cm x 60 cm, readout both ends with PMT Total thickness 32 X,/1.6 A
= Use 3 dynode (2, 5, 8) signals to extend the dynamic range

= Optical filters: x1 (LO, L13), x2.5 (L1, L12) and x5 (L3-L11) Detection area 60cm X 60cm
more attenuation on one end (negative end)

= Charge readout/Trigger: ASIC with dynamic range up to 12 pC

X Layer (22 BGO bars)

Attenuating filter Attenuating filter /
x1, x2,5 or x5 moye attenuation g
Dynode 2«— § —Dynode 2 Y Layer
Dynode 5+— PMT |:| BGO crystal bar (60 cm) |[:|PMT |—Dynode 5
Dynode 8+ : ; —Dynode 8

14 Layers

.Soh
AllN vwu
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Electron energy linearity and resolution with test beam at CERN
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Good linearity and resolution, good agreement between test beam and simulation

Xin Wu

Electron energy correction: ~6-7% for 100 GeV — 1 TeV

NIM A 856 (2017)11 22



Proton energy resolution from test beam at CERN
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BGO in-flight MIP calibration

= “MIP” calibration: ADC > MeV and equalization: use events near the equator, =20°
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BGO overall calibration stability over 7 years
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Absolute energy scale calibration

Overall energy scale can be checked with geomagnetic cut-off effects
Charge particles detected in a geomagnetic zone have specific cut-off in the flux due to magnetic shielding

UseLin 1-1.14, cut-off ~ 13 GeV
Measured cut-off compared to MC simulation with IGRF-12 model

and back-tracing code
~1.2 years of electron data

Caata/ Cprea = 1.012£0.017(stat.) £0.013(sys.) (ICRC2017-197)

Mcllwain L shells
Energy scale agrees with expectation within 2%

I —e= Back Tracing
%__.. —— DAMPE = C istent Its obtained with ~7 f electron dat
R e Cutoff onsistent results obtained wi years of electron data
To10° == - =  Will be presented at the upcoming ICRC2023
g b % = Consistent results also obtained by measuring the flux cut-
% offs of carbon, neon, silicon, and iron with ~1.4 years of data
S 100 i . = lron cut-off is ~200 GeV
> '_,‘ i
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Energy linearity

= BGO bar energy linearity can be checked with electron data (EM shower energy well measured)
= On average ~20% of the total energy is deposited in the “hottest” BGO bar
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=  Good linearity for EM showers up to >10 TeV
= No fluorescence saturation observed: ultimate limit is the readout saturation at ~4 TeV/bar = ~20 TeV CRE
xinwu ®  Shower max is well contained in the calorimeter for electron up to ~10 TeV 27



BGO readout saturation correction: towards PeV flux

= Electronics readout saturation starts to happen even with the low gain high attenuation channel with >~40 TeV p/He
= From simulation: ~1.5% /1.2% of proton/He have saturated bars @100 TeV
= |n data: ADC value set to O when the saturation limit of a channel is reached
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Analytical and ML algorithms have been developed for readout saturation corrections

Analytical (NIM A 984 (2020) 164645): using surrounding bars to predicts missing energy =*

= not optimal for heavily saturated (multiple saturated bars) events
ML (2021 JINST 16 P07036): use CNN to process the entire image of BGO
= Provides an estimate of the total missing energy
ximvuCan handle multiple saturated bars, less bias than analytical
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Conclusions

= DAMPE is working extremely well: has been collecting a unigue sample of directly detected TeV - PeV CRs
and has produced ground breaking measurements

= Detector still in excellent condition after 7 years in space

= Mission has rolling approvals to continue operation, with no plan to stop!

" |n the next 5-10 years DAMPE likely to dominate the CR precision spectroscopy in the TeV - PeV range
= Some (obvious) observations with respect to detector design

= Dynamic range management is very important for charge and (calorimetric) energy measurement

= A high precision tracker is indispensable (it really helps to know where the particle is hitting!) for
robust calibrations/corrections of all subsystems and for “full event” reconstruction (particle ID)

= Detector optimization is challenging because of multiple spices, large energy range and TeV - PeV
particle interactions (backsplash)

= Some (obvious) observations with respect to data analysis
= Detector performance can be continuously improved with better calibrations/corrections

= ML methods are typically more powerful than “conventional” methods but need long periods of
development (trial and error) and careful validations (data/MC agreement)

= Modelling of TeV - PeV hadronic interaction is often the biggest source of systematic uncertainties



Thank you very much for your attention!

30



