

Poetry in Orbit: MultiMessenger Astrophysics with the Probe Of Extreme Multi-Messenger Astrophysics (POEMMA)

Science Goals:

Discover the origin of Ultra-High Energy Cosmic Rays
 Measure Spectrum, composition, Sky Distribution at Highest
 Energies (E_{CR} > 20 EeV) using stereo air fluorescence technique

John Krizmanic
NASA/GSFC
for the POEMMA Collaboration

Poetry in Orbit: MultiMessenger Astrophysics with the Probe Of Extreme Multi-Messenger Astrophysics (POEMMA)

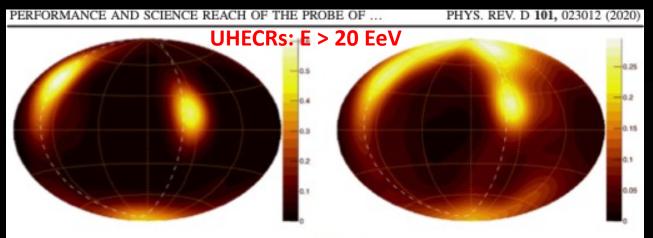
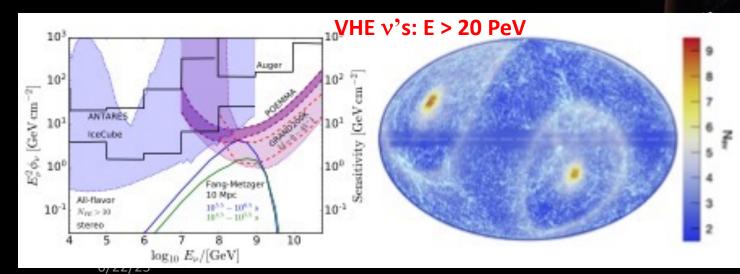
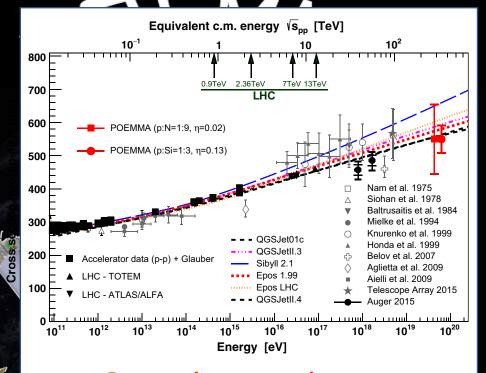




FIG. 23. Left: Skymap of nearby starburst galaxies from Refs. [35,103] weighted by radio flux at 1.4 GHz, the attenuation factor accounting for energy losses incurred by UHECRs through propagation, and the exposure of POEMMA. The map has been smoothed using a von Miser-Fisher distribution with concentration parameter corresponding to a search radius of 15.0° as found in Ref. [35]. The color scale indicates \mathcal{F}_{sc} , the probability density of the source sky map, as a function of position on the sky. The white dot-dashed line indicates the supergalactic plane. Right: Same as at left for nearby galaxies from the 2MRS catalog [105] and weighting by K-band flux corrected for Galactic extinction.

Proton-air cross section measurement at √s ≈ 300 TeV

PhysRevD.101.023012

POEMMA Collaboration

- A. V. Olinto, J. Krizmanic, J. H. Adams, R. Aloisio, 5
- L. A. Anchordoqui,⁶ M. Bagheri,⁷ D. Barghini,⁸ M. Battisti,⁸
- D. R. Bergman, M. E. Bertaina, P. F. Bertone, 10 F. Bisconti, 11
- M. Bustamante, 12 M. Casolino, 13,14 K. Černý, 15 M. J. Christl, 10
- A. L. Cummings,⁵ I. De Mitri,⁵ R. Diesing,¹ R. Engel,¹⁶ J. Eser,¹
- K. Fang, ¹⁷ F. Fenu, ⁸ G. Filippatos, ¹⁸ E. Gazda, ⁷ C. Guepin, ¹⁹
- A. Haungs, ¹⁶ E. A. Hays, ² E. G. Judd, ²⁰ P. Klimov, ²¹ V. Kungel, ¹⁸
- E. Kuznetsov,⁴ Š. Mackovjak,²² D. Mandát,²³ L. Marcelli,¹⁴
- J. McEnery,² G. Medina-Tanco,²⁴ K.-D. Merenda,¹⁸ S. S. Meyer,¹
- J. W. Mitchell,² H. Miyamoto,⁸ J. M. Nachtman,²⁵ A. Neronov,²⁶
- F. Oikonomou,²⁷ Y. Onel,²⁵ A. N. Otte,⁷ E. Parizot,²⁸ T. Paul,⁶
- M. Pech,²³ J. S. Perkins,² P. Picozza,^{14,29} L.W. Piotrowski,³⁰
- Z. Plebaniak,⁸ G. Prévôt,²⁸ P. Reardon,⁴ M. H. Reno,²⁵ M. Ricci,³¹
- O. Romero Matamala, F. Sarazin, P. Schovánek, 23
- K. Shinozaki,³² J. F. Soriano,⁶ F. Stecker,² Y. Takizawa,¹³
- R. Ulrich, ¹⁶ M. Unger, ¹⁶ T. M. Venters, ² L. Wiencke, ¹⁸ D. Winn, ²⁵
- R. M. Young,¹⁰ M. Zotov²¹

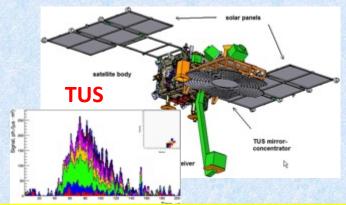
70+ scientists from 21+ institutions (US + 10+) OWL, JEM-EUSO, Auger, TA, Veritas, CTA, Fermi, Theory

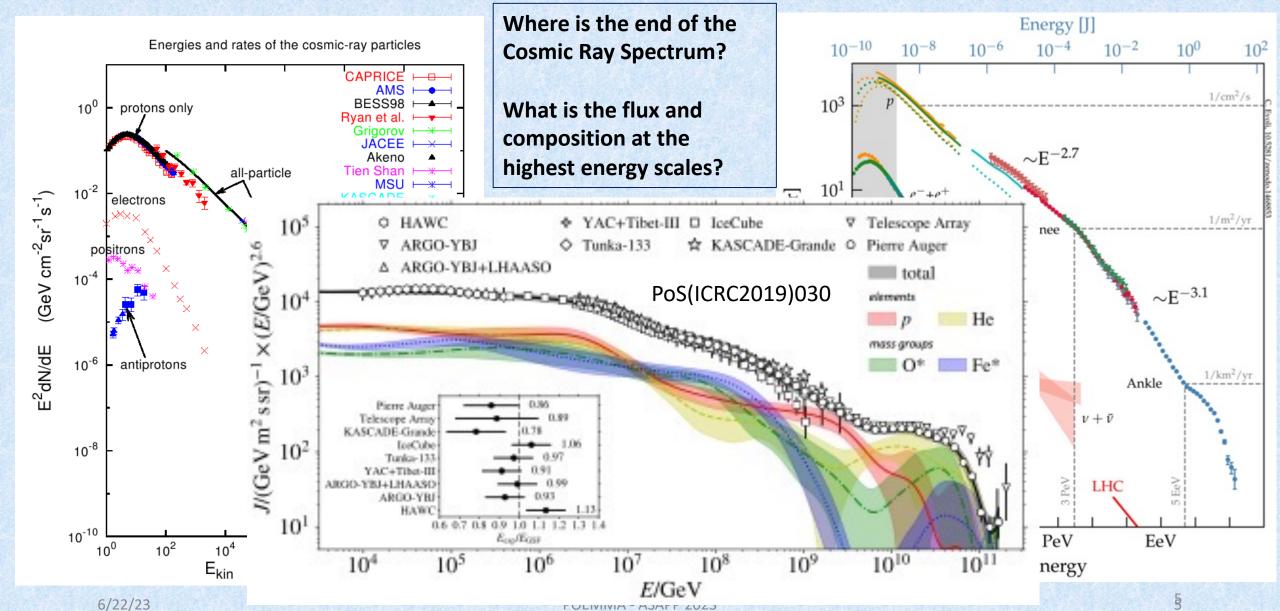
author list for *The POEMMA (Probe Of Extreme Multi-Messenger Astrophysics),* JCAP 2021, id.007

- ¹The University of Chicago, Chicago, IL, USA
- ²NASA Goddard Space Flight Center, Greenbelt, MD, USA
- ³Center for Space Science & Technology, University of Maryland, Baltimore County, Baltimore, MD, USA
- ⁴University of Alabama in Huntsville, Huntsville, AL, USA
- ⁵Gran Sasso Science Institute, L'Aquila, Italy
- ⁶City University of New York, Lehman College, NY, USA
- ⁷Georgia Institute of Technology, Atlanta, GA, USA
- ⁸Universita' di Torino, Torino, Italy
- ⁹University of Utah, Salt Lake City, Utah, USA
- ¹⁰NASA Marshall Space Flight Center, Huntsville, AL, USA
- ¹¹Istituto Nazionale di Fisica Nucleare, Turin, Italy
- ¹²Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen, Denmark
- ¹³RIKEN, Wako, Japan
- ¹⁴Istituto Nazionale di Fisica Nucleare, Section of Roma Tor Vergata, Italy
- ¹⁵Joint Laboratory of Optics, Faculty of Science, Palacký University, Olomouc, Czech Republic
- ¹⁶Karlsruhe Institute of Technology, Karlsruhe, Germany
- ¹⁷Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, C. 94305, USA
- ¹⁸Colorado School of Mines, Golden, CO, USA
- ¹⁹Department of Astronomy, University of Maryland, College Park, MD, USA
- ²⁰Space Sciences Laboratory, University of California, Berkeley, CA, USA
- $^{21}\mbox{Skobeltsyn}$ Institute of Nuclear Physics, Lomonosov Moscow State University, Moscov Russia
- ²²Institute of Experimental Physics, Slovak Academy of Sciences, Kosice, Slovakia
- ²³Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic
- ²⁴Instituto de Ciencias Nucleares, UNAM, CDMX, Mexico
- ²⁵University of Iowa, Iowa City, IA, USA
- ²⁶University of Geneva, Geneva, Switzerland
- ²⁷Institutt for fysikk, NTNU, Trondheim, Norway
- ²⁸Université de Paris, CNRS, Astroparticule et Cosmologie, F-75013 Paris, France
- ²⁹Universita di Roma Tor Vergata, Italy
- ³⁰Faculty of Physics, University of Warsaw, Warsaw, Poland
- ³¹Istituto Nazionale di Fisica Nucleare Laboratori Nazionali di Frascati, Frascati, Italy
- ³²National Centre for Nuclear Research, Lodz, Poland

POEMMA Heritage and POEMMA-fueled developments

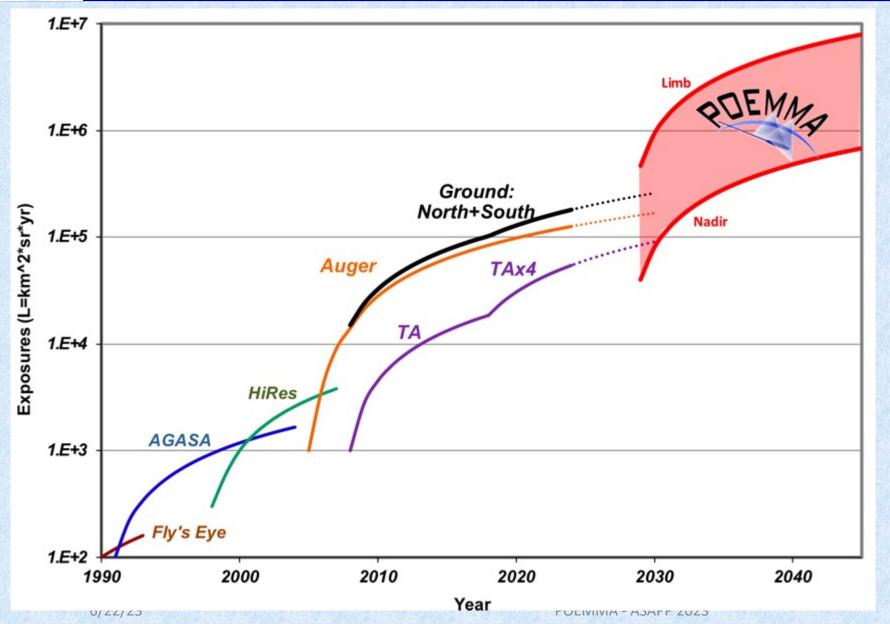
Based on OWL 2002 study, JEM-EUSO, EUSO balloon experience, CHANT & nueBACH

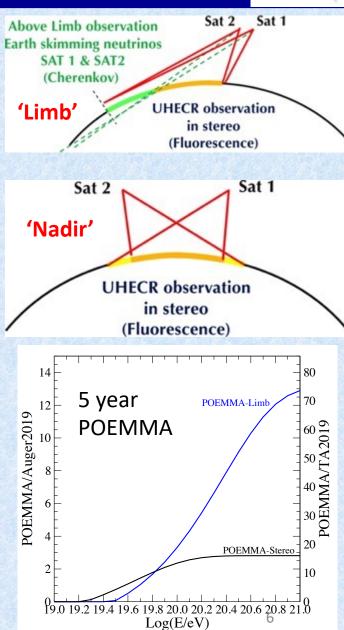

concepts, TUS experience ...



Mini-EUSO

The Cosmic Ray Spectrum





POEMMA: UHECR Exposure History:

POEMMA: Science Goals

POEMMA Science goals:

primary

- Discover the origin of Ultra-High Energy Cosmic Rays via high-statistics
 Measure Spectrum, composition, Sky Distribution at Highest Energies (E_{CR} > 20 EeV)
 Requires very good angular, energy, and X_{max} resolutions: stereo fluorescence
 High sensitivity UHE neutrino measurements via stereo fluorescence measurements
- Observe Neutrinos from Transient Astrophysical Events Measure beamed Cherenkov light from upward-moving EAS from τ -leptons source by
 - v_{τ} interactions in the Earth (E_v > 20 PeV)
 - Requires tilted-mode of operation to view limb of the Earth & ~10 ns timing Allows for tilted UHECR air fluorescence operation, higher GF but degraded resolutions

secondary

- study fundamental physics with the most energetic cosmic particles: CRs and Neutrinos
- search for super-Heavy Dark Matter: photons and neutrinos: PhysRevD.101.023012, PhysRevD.104.083002
- study Atmospheric Transient Events, survey Meteor Population, ..

POEMMA: Science Goals

POEMMA Science goals:

primary

- Discover the origin of Ultra-High Energy Cosmic Rays via high-statistics
 Measure Spectrum, composition, Sky Distribution at Highest Energies (E_{CR} > 20 EeV)
 Requires very good angular, energy, and X_{max} resolutions: stereo fluorescence
 High sensitivity UHE neutrino measurements via stereo fluorescence measurements
- Observe Neutrinos from Transient Astrophysical Events
 - Measure beamed Cherenkov light from upward-moving EAS from τ -leptons source by v_{τ} interactions in the Earth (E_v > 20 PeV)
 - Requires tilted-mode of operation to view limb of the Earth & ~10 ns timing Allows for tilted UHECR air fluorescence operation, higher GF but degraded resolutions

secondary

- study fundamental physics with the most energetic cosmic particles: CRs and Neutrinos
- search for super-Heavy Dark Matter: photons and neutrinos: PhysRevD.101.023012, PhysRevD.104.083002
- study Atmospheric Transient Events, survey Meteor Population,

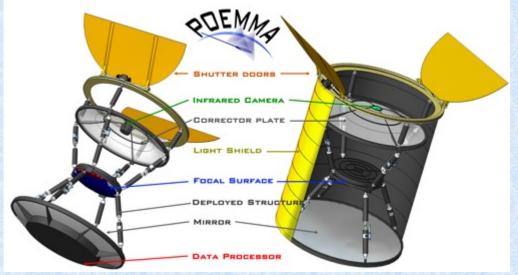
POEMMA: Science Goals

POEMMA Science goals:

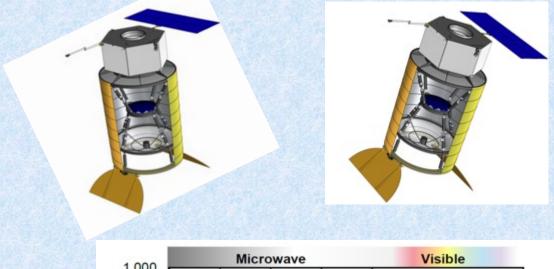
primary

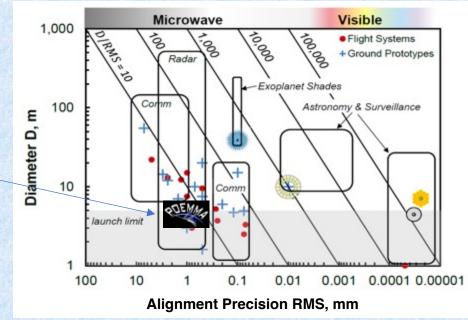
- Discover the origin of Ultra-High Energy Cosmic Rays via high-statistics
 - Measure Spectrum, composition, Sky Distribution at Highest Energies ($E_{CR} > 20 \; EeV$)
 - Requires very good angular, energy, and X_{max} resolutions: stereo fluorescence
 - High sensitivity UHE neutrino measurements via stereo fluorescence measurements
- Observe Neutrinos from Transient Astrophysical Events
 - Measure beamed Cherenkov light from upward-moving EAS from τ -leptons source by v_{τ} interactions in the Earth (E, > 20 PeV)
 - Requires tilted-mode of operation to view limb of the Earth & ~10 ns timing Allows for tilted UHECR air fluorescence operation, higher GF but degraded resolutions

secondary


vs ≈ 450 TeV @ 100 EeV

- study fundamental physics with the most energetic cosmic particles: CRs and Neutrinos
- search for super-Heavy Dark Matter: photons and neutrinos: PhysRevD.101.023012, PhysRevD.104.083002
- study Atmospheric Transient Events, survey Meteor Population, ...

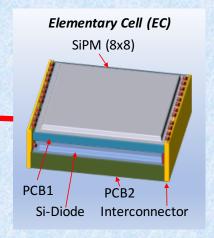

POEMMA: SpaceCraft and Telescope Specifications



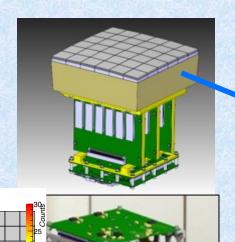
Photometer	Components		Spacecraft	
Optics	Schmidt	45° full FoV	Slew rate	90° in 8 min
	Primary Mirror	4 m diam.	Pointing Res.	0.1°
	Corrector Lens	3.3 m diam.	Pointing Know.	0.01°
	Focal Surface	1.6 m diam.	Clock synch.	10 nsec
	Pixel Size	$3 \times 3 \text{ mm}^2$	Data Storage	7 days
	Pixel FoV	0.084°	Communication	S-band
PFC	MAPMT (1μs)	126,720 pixels	Wet Mass	3,450 kg
PCC	SiPM (20 ns)	15,360 pixels	Power (w/cont)	550 W
Photometer	(One)	444	Mission	(2 Observatories)
	Mass	1,550 kg	Lifetime	3 year (5 year goal)
	Power (w/cont)	700 W	Orbit	525 km, 28.5° Inc
	Data	< 1 GB/day	Orbit Period	95 min
			Observatory Sep.	~25 - 1000+ km

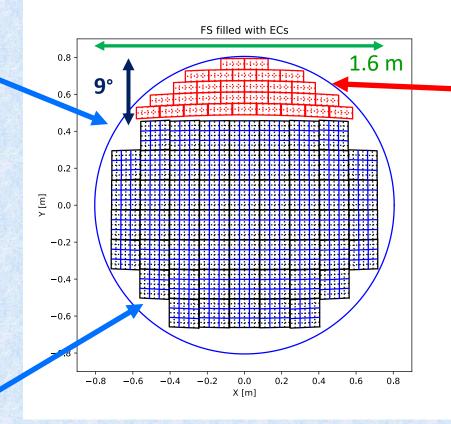
Each Observatory = Photometer + Spacecraft; POEMMA Mission = 2 Observatories

OEMMA - ASAPP 2023


Imaging ~104 away from diffraction limit

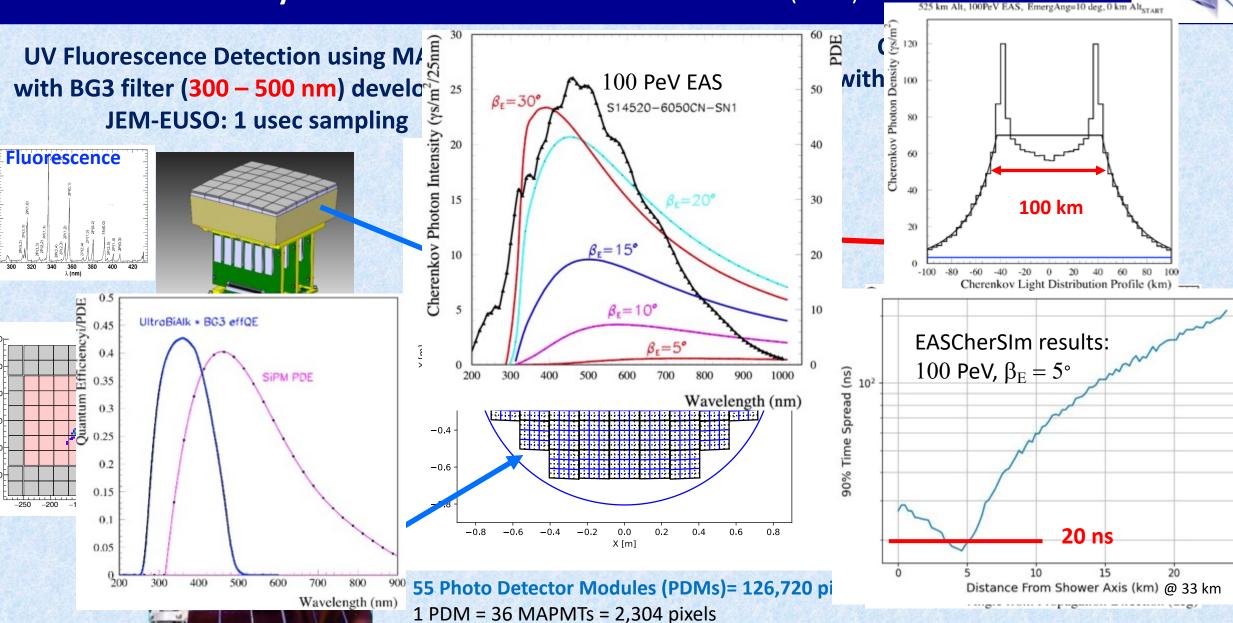
POEMMA: Hybrid Focal Plane




UV Fluorescence Detection using MAPMTs with BG3 filter (300 – 500 nm) developed by JEM-EUSO: 1 usec sampling, 3 mm pixel size

Cherenkov Detection with SiPMs (300 – 1000 nm): 10 nsec sampling

30 SiPM focal surface units Total 15,360 pixels 512 pixels per FSU (64x4x2) 3 mm pixel size


55 Photo Detector Modules (PDMs)= 126,720 pixels

1 PDM = 36 MAPMTs = 2,304 pixels

6/22/23

POEMMA - ASAPP 2023

POEMMA: Hybrid Focal Plane: see NIMA 985 id.164614 (2021)

POEMMA - ASAPP 2023

POEMMA: Mission (Class B) defined by weeklong MDL run at GSFC

Mission Lifetime: 3 years (5 year goal)

Orbits: 525 km, 28.5° Inc

Orbit Period: 95 min

Satellite Separation: ~25 km - 1000+ km

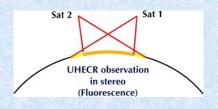
Satellite Position: 1 m (knowledge)

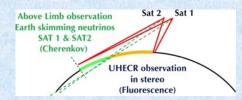
Pointing Resolution: 0.1°

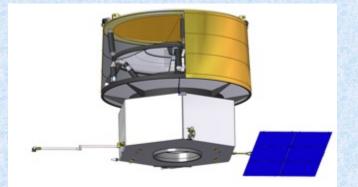
Pointing Knowledge: 0.01°

Slew Rate: 8 min for 90 °

Satellite Wet Mass: 3860 kg

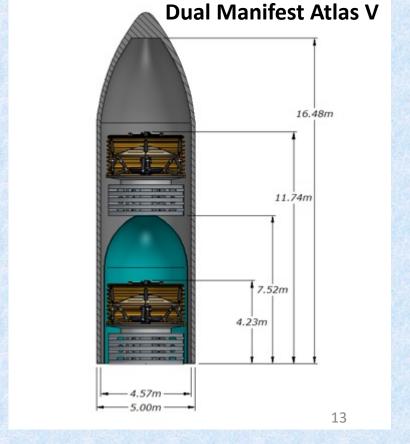

Power: 1250 W (w/contig)


Data: < 1 GB/day


Data Storage: 7 days
Communication: S-band
Clock synch (timing): 10 nsec

Flight Dynamics/Propulsion:

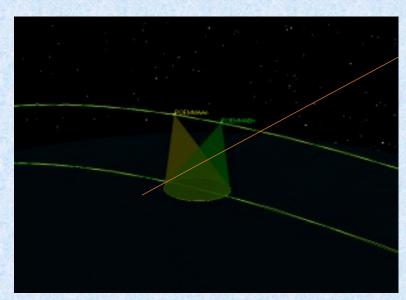
- 300 km ⇒ 25 km SatSep
 - Puts both in CherLight Pool
- $\Delta t = 3 \text{ hr: } 8 15 \text{ times}$
- $\Delta t = 24 \text{ hr: } 90 \text{ times}$

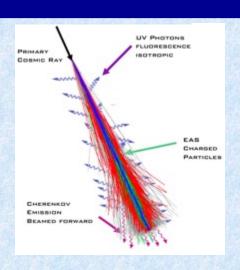


Operations:

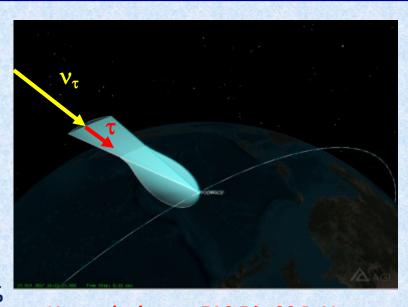
- Each satellite collects data autonomously
- Coincidences analyzed on the ground
- View the Earth at near-moonless nights,
 charge in day and telemeter data to ground
- ToO Mode: dedicated com uplink to re-

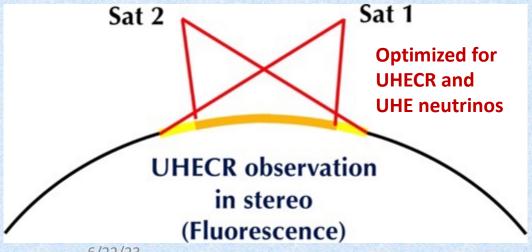
6/Orient satellites if desired

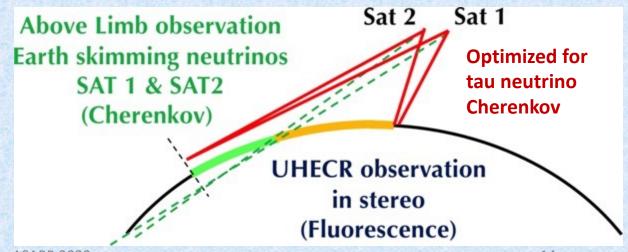




POEMMA Operational Modes: UHECR Stereo versus Limb-viewing Neutrino

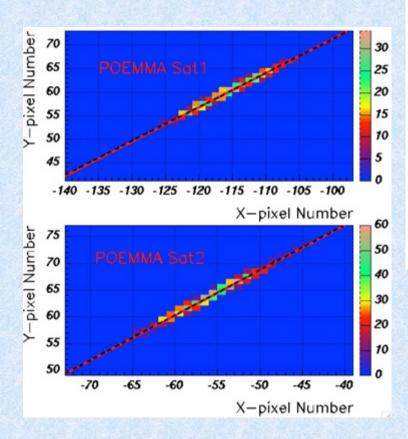

Stereo Viewing of UHECRs E \gtrsim 20 EeV via Fluoresence: 10's of μ sec timescale

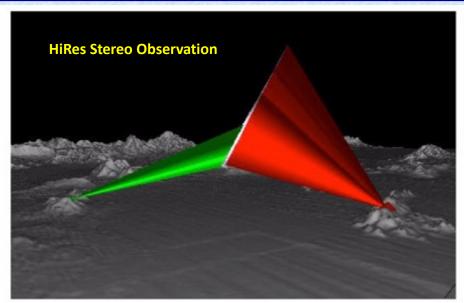

Dark, quasi-moon less nights:

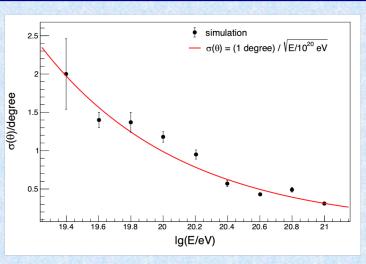

Fluorescence Duty Cycle: 11%

Cherenkov Duty Cycle: 20%

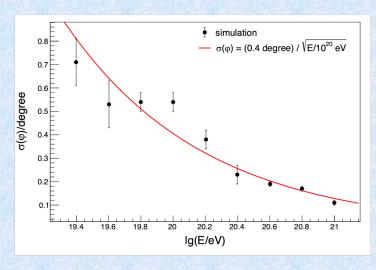
Upward τ-lepton EAS E ≥ 20 PeV via Cherenkov: ~10 nsec timescale




OEMMA UHECR Performance: Stereo Reconstructed Angular Resolution


50 EeV simulated event

see PhysRevD.101.023012



Stereo Geometric Reconstruction

- Intersection of EAS-detector planes defines the EAS trajectory
- Requires minimum opening angle between planes ≥ 5°
- With track selection → 80% reconstruction efficiency
- FoV_{PIX} = 0.084° coupled with small RMS spot size allows for precise determination

Stereo Reconstructed Zenith Angle Resolution

Stereo Reconstructed Azimuth Angle Resolution

6/22/23 POEMMA - ASAPP 2023 15

POEMMA: UHECR Performance: see PhysRevD.101.023012

Significant increase in exposure with all-sky coverage Uniform sky coverage to guarantee the discovery of UHECR sources Spectrum, Composition, Anisotropy: $E_{CR} > 20 \text{ EeV}$

Very good energy (< 20%), angular ($\lesssim 1.2^{\circ}$), and composition ($\sigma_{xmax} \lesssim 30 \text{ g/cm}^2$) resolutions

PO

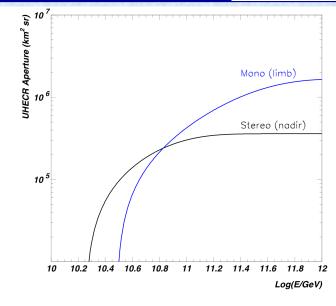
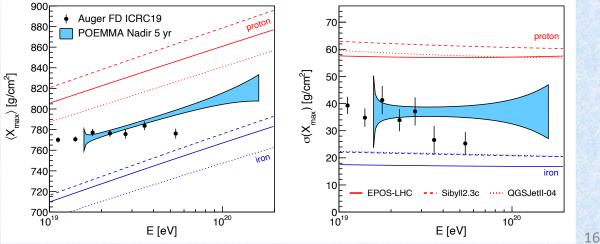



FIG. 10: The simulated UHECR aperture after event reconstruction for POEMMA for stereo mode and tilted mode.


Auger-inspired Composition Evolution Model

POEMMA: UHECR Sky Coverage (isotropic UHECR flux)

Significant increase in exposure with all-sky coverage
Uniform sky coverage to guarantee the discovery of UHECR sources

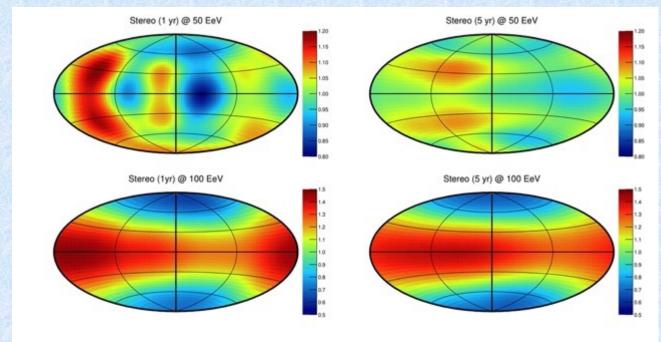
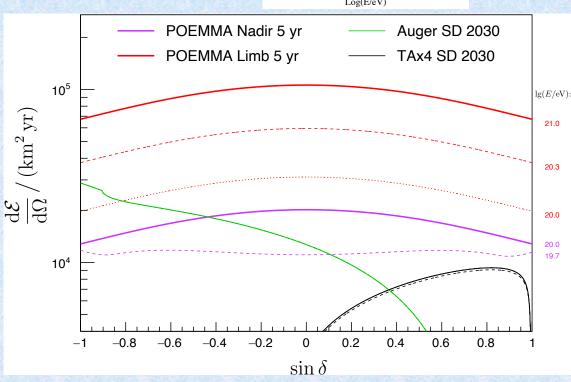



FIG. 13: POEMMA's UHECR sky exposures in declination versus right ascension. The color scale denoting the exposure variations in terms of the mean response taking into account the positions of the sun and the moon during the observation cycle.

POEMMA: UHECR Anisotropy Analysis see PhysRevD.101.023012

15° Angular Spread, 10% StarBurst Fraction

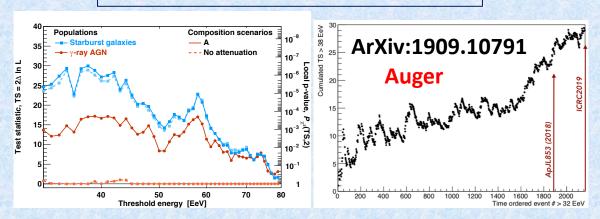


Figure 11: Left: Maximum likelihood-ratio as a function of energy threshold for the models based on SBGs and γ AGNs. The results are shown in the attenuation (full line) and no-attenuation (dashed line) scenarios. Right: Cumulated test statistics for $E_{\text{thr}} = 38$ EeV as a function of the time ordered number of events (for the SBG-only model). The number of events at the time of [39] and of this conference are indicated by the red arrows.

Catalog	$f_{ m sig}$	TS	σ
SBG	5%	6.2	2.0
	10%	24.7	4.6
	15%	54.2	7.1
	20%	92.9	9.4
2MRS	5%	2.4	1.0
	10%	8.7	2.5
	15%	20.0	4.1
	20%	35.2	5.6
Swift-BAT AGN	5%	10.4	2.8
	10%	39.6	6.0
	15%	82.4	8.8
	20%	139.3	11.6

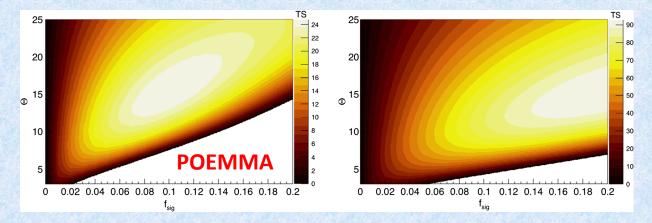


FIG. 24. TS profile for 1400 events for a particular scenario using the starburst source sky map in Fig. 23. In the scenario pictured here, the fraction of events drawn from the source sky map is f = 10% (left) and 20% (right), and the angular spread is $\Theta = 15^{\circ}$.

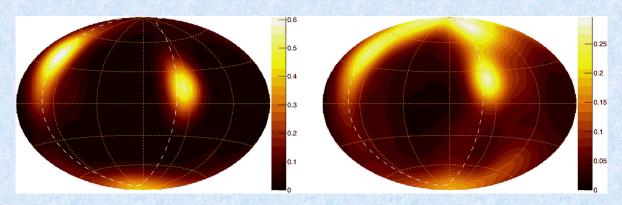
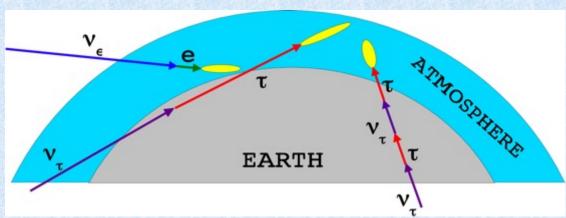
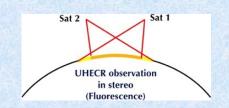


FIG. 23. Left: Skymap of nearby starburst galaxies from Refs. [35,103] weighted by radio flux at 1.4 GHz, the attenuation factor accounting for energy losses incurred by UHECRs through propagation, and the exposure of POEMMA. The map has been smoothed using a von Miser-Fisher distribution with concentration parameter corresponding to a search radius of 15.0° as found in Ref. [35]. The color scale indicates $\mathcal{F}_{\rm src}$, the probability density of the source sky map, as a function of position on the sky. The white dot-dashed line indicates the supergalactic plane. Right: Same as at left for nearby galaxies from the 2MRS catalog [105] and weighting by K-band flux corrected for Galactic extinction.

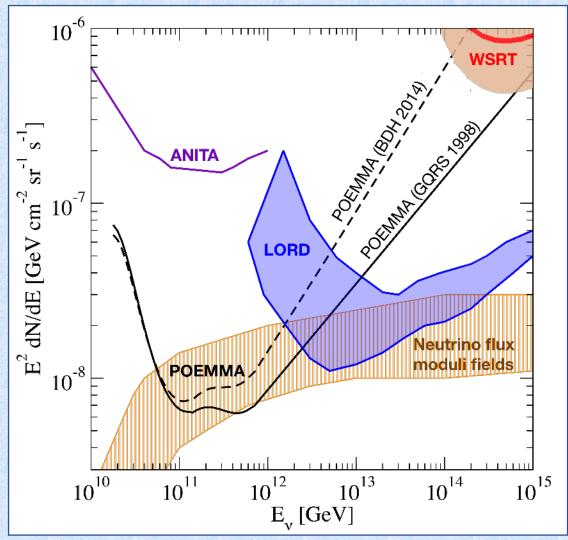
POEMMA: Air fluorescence Neutrino Sensitivity: see PhysRevD.101.023012


Effectively comes for free in stereo UHECR mode

Assumptions:


- $CC v_e : 100\% E_v in EAS$
- CC v_{μ} & v_{τ} : 20% E_{ν} in EAS ($\gamma c \tau_{\tau} \approx 5000$ km)
- NC v_e & v_μ & v_τ : 20% E_v in EAS

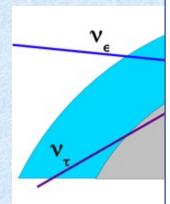
UHECR Background Probabilities (1 event in 5 years):


- Auger Spectrum (100% H): < 1%
- TA Spectrum (100% H): ≈ 4%

S. Bottai and S. Giurgola, UHE and EHE neutrino induced taus inside the Earth, Astroparticle Physics. 18(6), 539-549 (Mar., 2003).

For $E_{\nu} \gtrsim 1$ PeV, $\sigma_{cc} \& \sigma_{Nc}$ virtually identical for $\nu \& \nu$ bar

POEMMA: Air fluorescence Neutrino Sensitivity: see PhysRevD.101.023012


Effectively

Assumptions

- CC
- CC
- NC

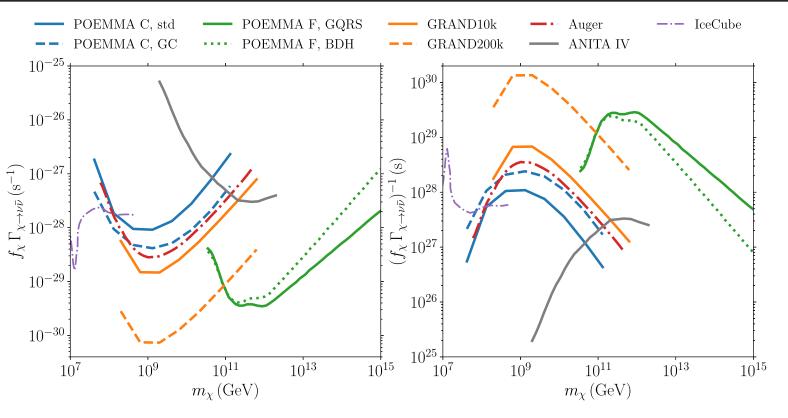
UHECR Backs

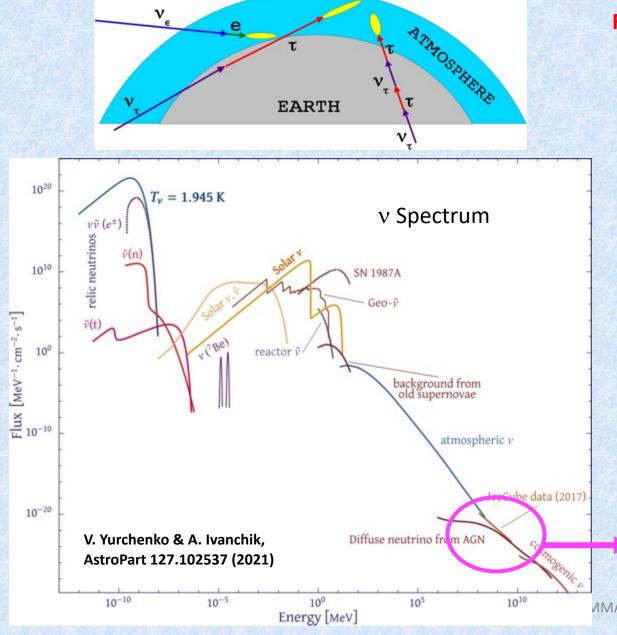
- Aug
- TA S

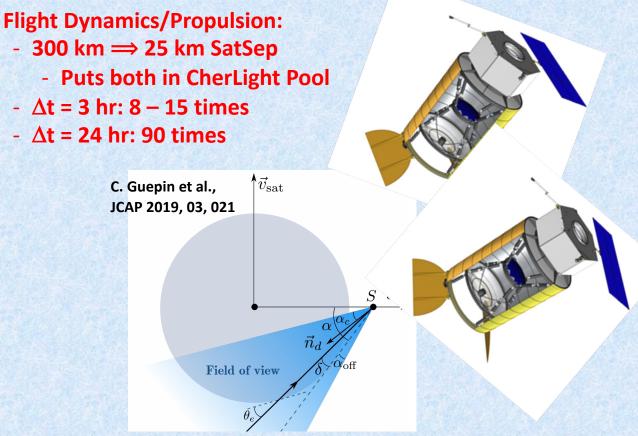
S. Bottai and S. G Earth, Astropartic

Indirect dark matter searches at ultrahigh energy neutrino detectors

CLAIRE GUÉPIN et al. PHYS. REV. D **104,** 083002 (2021)



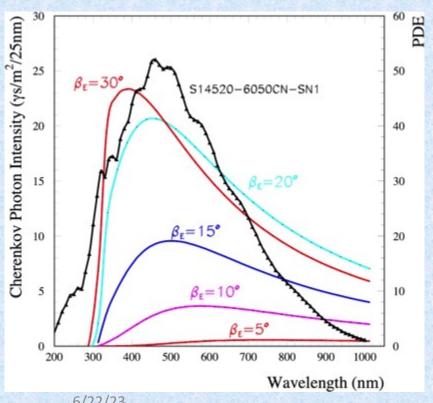

FIG. 4. Sensitivities to dark matter decay width (left) and inverse of the decay width (right), $\nu\bar{\nu}$ channel. Five-year sensitivities of POEMMA for the Cherenkov standard [(std), solid blue] and Galactic Center [(GC), dashed blue], and the fluorescence (green) observation modes, GRAND10k (solid orange), and GRAND200k (dashed orange). Sensitivities of ANITA IV (gray), Auger (dot-dashed red), and the IceCube [84] (dot-dashed purple). Allowed regions are below (above) the curves in the left (right) figure.

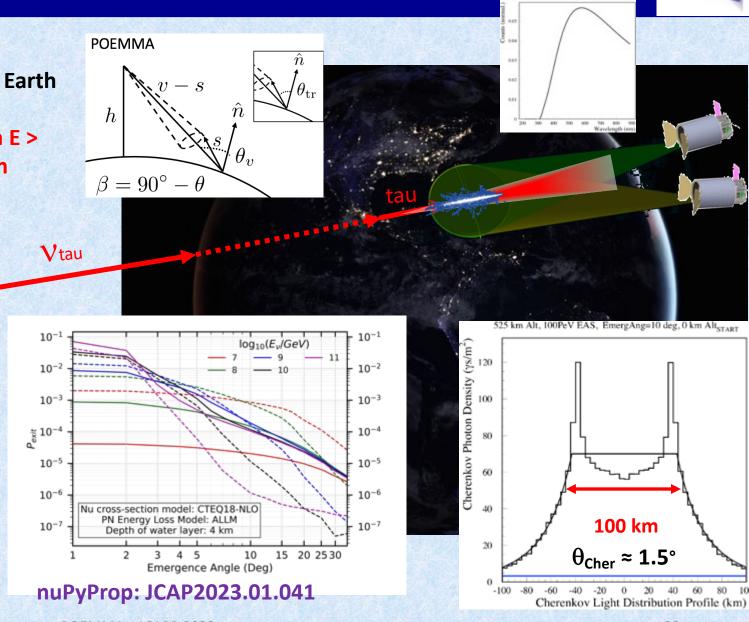

6/22/23

Cosmic Neutrino Sources and Optical Cherenkov EAS Detection

Avionics on each POEMMA satellite allow for slewing: 90° in 500 sec

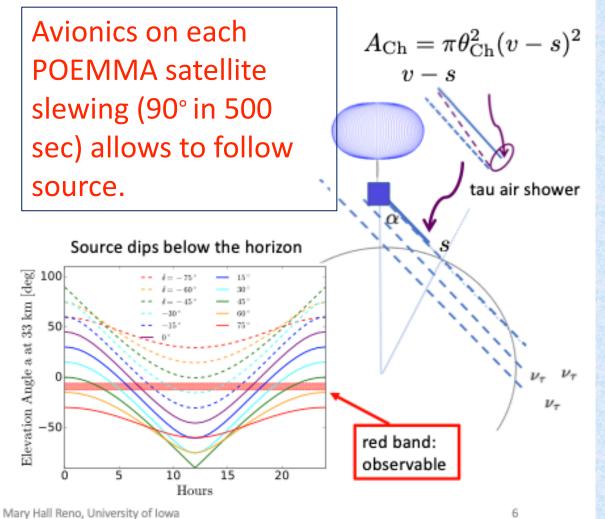
Cosmic \vee flux dominates over ATM background ~100 TeV Note: ATM \vee flux has a minimal tau neutrino component at high energies.

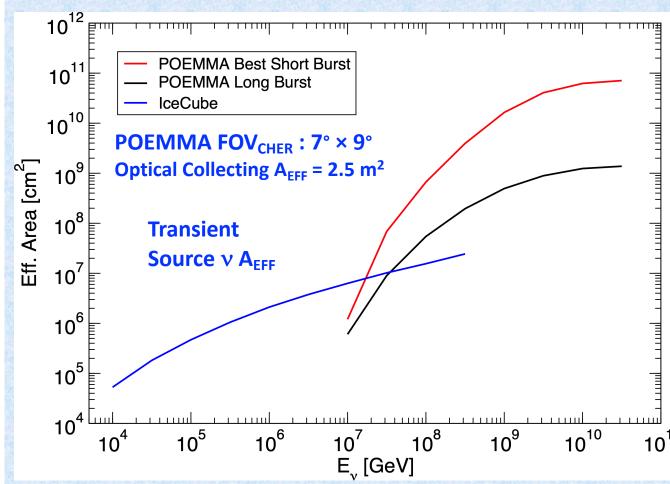



POEMMA Tau Neutrino Detection: see PhysRevD.100.063010

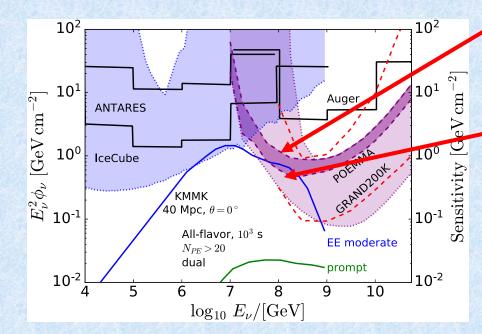
High-Energy Astrophysical Events generates neutrinos (v_e, v_u) and 3 neutrino flavors reach Earth via neutrino oscillations.

POEMMA designed to observe neutrinos with E > 20 PeV through Cherenkov signal of EASs from Earth-emerging tau decays.

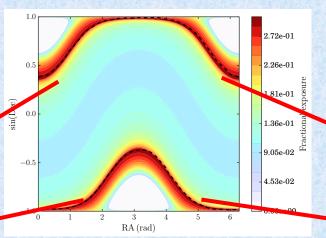




POEMMA Transient Neutrino Detection via external alert

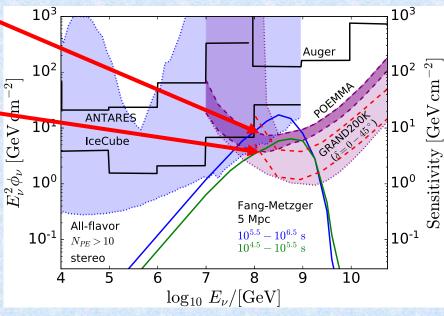


POEMMA ToO Neutrino Sensitivity: see PhysRevD.102.123013


Short Bursts:

- 500 s to slew to source after alert
- 1000 s burst duration
- Source celestial location optimal
- Two independent Cher measurements
 - 300 km SatSep
- 20 PE threshold:
 - AirGlowBack < 10⁻³/year

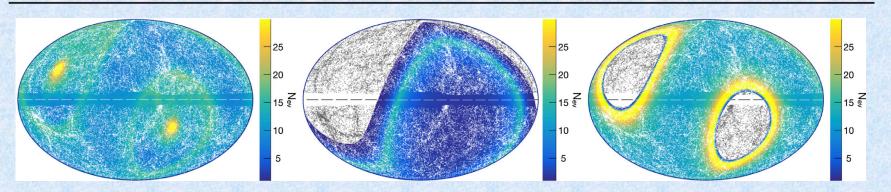
17% hit for ignoring $\tau \rightarrow \mu$ channel


One orbit sky exposure assuming slewing to source position

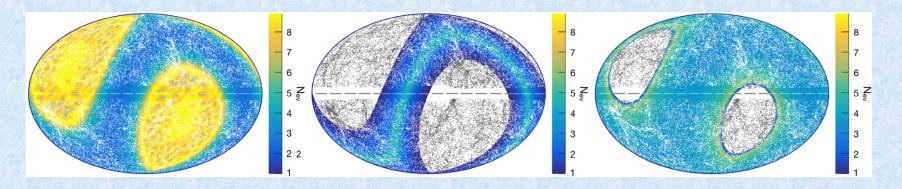
IceCube, ANTARES, Auger Limits for NS-NS merger GW170817

Long Bursts:

- 3 to 24+hr to move SatSep to 50 km
- Burst duration ≥ 10⁵ s (models in plot)
- Average Sun and moon effects
- Simultaneous Cher measurements
 - 50 km SatSep
- 10 PE threshold (time coincidence):
 - AirGlowBack < 10⁻³/year



POEMMA ToO Neutrino Sensitivity: see PhysRevD.102.123013


POEMMA'S TARGET-OF-OPPORTUNITY SENSITIVITY TO ...

PHYS. REV. D 102, 123013 (2020)

BNS Merger at 5 Mpc

FIG. 7. Left: sky plot of the expected number of neutrino events as a function of galactic coordinates for POEMMA in the long-burst scenario of a BNS merger, as in the Fang and Metzger model [22], and placing the source at 5 Mpc. Point sources are galaxies from the 2MRS catalog [78]. Middle: same as at left for IceCube for muon neutrinos. Right: same as at left for GRAND200k. Areas with gray point sources are regions for which the experiment is expected to detect less than one neutrino.

sGRB at 40 Mpc

FIG. 8. Left: sky plot of the expected number of neutrino events as a function of galactic coordinates for POEMMA in the best-case short-burst scenario of an sGRB with moderate EE, as in the KMMK model [17], and placing the source at 40 Mpc. Point sources are galaxies from the 2MRS catalog [78]. Middle: same as at left for IceCube for muon neutrinos. Right: same as at left for GRAND200k. Areas with gray point sources are regions for which the experiment is expected to detect less than one neutrino.

POEMMA ToO Rate of Detection: see PhysRevD.102.123013

TONIA M. VENTERS et al.

PHYS. REV. D **102**, 123013 (2020)

TABLE IV. Average expected numbers of neutrino events above $E_{\nu} > 10^7$ GeV detectable by POEMMA for several models of transient source classes assuming source locations at the GC and at 3 Mpc. The horizon distance for detecting 1.0 neutrino per ToO event is also provided. Source classes with observed durations $> 10^3$ s are classified as long bursts. Those with observed durations $\lesssim 10^3$ s are classified as short bursts. Models in boldface type are those models for which POEMMA has $\gtrsim 10\%$ chance of observing a ToO during the proposed mission lifetime of 3–5 years. Models in italics are the same but for a mission lifetime of 10 years.

		Long	bursts			
Source class	No. of <i>ν</i> 's at GC	No. of ν 's at 3 Mpc	Largest distance for 1.0ν per event	Model	reference	
TDEs	1.4×10^{5}	0.9	3 Mpc	Dai and Fang [18]	average	
TDEs	6.8×10^{5}	4.7	7 Mpc	Dai and Fang [18]	bright	
TDEs	2.7×10^8	1.7×10^3	128 Mpc	Lunardini and Winter [19] $M_{\rm SMBH} = 5 \times 10^6 M_{\odot}$ Lumi scaling model		
TDEs	7.7×10^{7}	489	69 Mpc		ter [19] Base scenario	
Blazar flares	NA ^a	NA ^a	47 Mpc	RFGBW [20]—FSRQ proton-dominated advective escape model		
lGRB reverse shock (ISM)	1.2×10^{5}	0.8	3 Mpc	Murase [16]	Murase [16]	
lGRB reverse shock (wind)	2.5×10^{7}	174	41 Mpc	Murase [16]		
BBH merger	2.8×10^7	195	43 Mpc	Kotera and Silk [fluence	21] (rescaled) Low	
BBH merger	2.9×10^8	2.0×10^3	137 Mpc	Kotera and Silk [fluence	21] (rescaled) High	
BNS merger	$4.3 imes 10^6$	30	16 Mpc	Fang and Metzger [22]		
BWD merger	25	0	38 kpc	XMMD [23]		
Newly born Crablike pulsars (p)	190	0	109 kpc	Fang [24]		
Newly born magnetars (p)	2.5×10^{4}	0.2	1 Mpc	Fang [24]		
Newly born magnetars (Fe)	5.0×10^{4}	0.3	2 Mpc	Fang [24]		
		Shor	t bursts			
Source class		of ν's t GC	No. of <i>ν</i> 's at 3 Mpc	Largest distance for 1.0ν per event	Model reference	
sGRB extended emission (moderate	e) 1.1	$\times 10^{8}$	800	90 Mpc	KMMK [17]	

^aNot applicable due to a lack of known blazars within 100 Mpc.

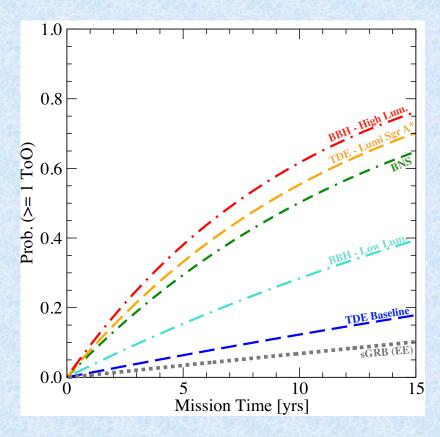
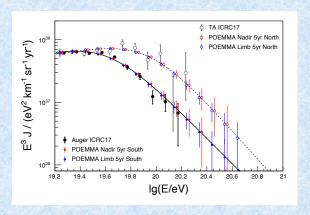
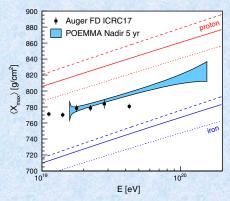
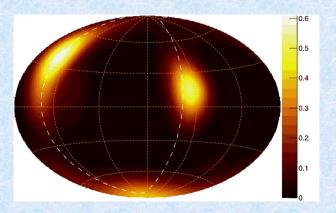
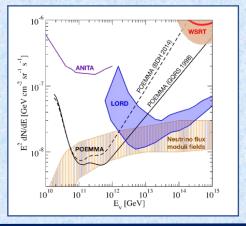


FIG. 9. The Poisson probability of POEMMA observing at least one ToO versus mission operation time for several modeled source classes. Featured source models are TDEs from Lunardini and Winter [19], BNS mergers from Fang and Metzger [22], BBH mergers from Kotera and Silk [21], and sGRBs with moderate EE from KMMK [17].

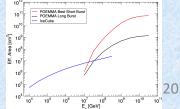


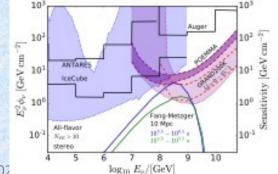

Summary

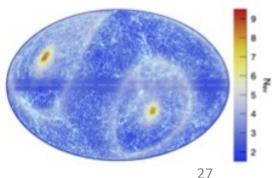



POEMMA will make high-statistics UHECRs above 20 EeV with the goal of discovering the source(s) of UHECRs

- POEMMA stereo fluorescence measurements provides excellent Angular, Energy, and Composition (x_{Max}) resolutions over the full sky.
- Ability to tilt POEMMA telescopes increases UHECR aperture at the highest energies, albeit with reduced EAS measurement performance.
- POEMMA Stereo fluorescence also provides exceptional UHE all-flavor UHE neutrino sensitivity



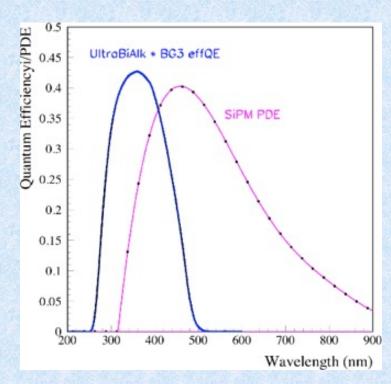


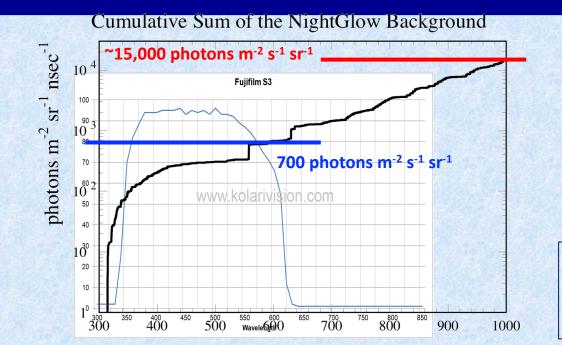


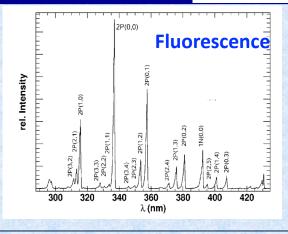
POEMMA will have unique VHE tau-neutrino sensitivity above 20 PeV to transient neutrino sources using EAS optical Cherenkov:

• The ability to quickly slew to a neutrino ToO provides remarkable sensitivity above 20 PeV

Frontier Technology Development for the future ...


- Combination of optical Cherenkov and geomagnetic radio EAS measurement techniques.
- 2. Lightweight, deployable optics
- 3. Low power (< 1 mW) FEE for SiPM readout : needed for neutrino surveyor (~ Mpixel) mission.
- 4. SiPM use in fluorescence telescopes.
- 5. Cosmic Ray EAS measurements in rarified atmosphere using 'overthe-Earth-limb' viewed cosmic rays via Cherenkov (and other?) as well as ToO neutrino measurements.



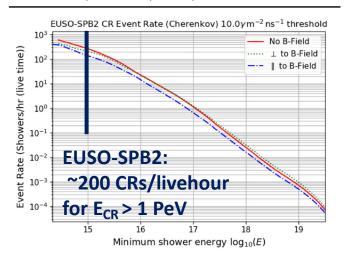

SiPM for EAS Air Fluorescence Measurements

Wavelength (nm)

Air fluorescence yield dominated by lines below 500 nm.

 Need to constrain wavelength to minimize dark-sky background via near-UV passing only filters (Fujifilm S3 filter shown).

J. Krizmanic et al., NIMA 985.164614 (2021)


- As with Cherenkov EAS SiPM operation, dark-sky background rejection leads to high PE thresholds (> 10) even with 10 μ s time-over-threshold requirement with 1 μ s sampling.
- SiPM use allows for significant reduction of mass for meter-size focal planes as compared to that needed for MAPMTs.

Cosmic Ray Measurements in Rarified Atmosphere (seen over-the-limb)

CUMMINGS, ALOISIO, ESER, and KRIZMANIC

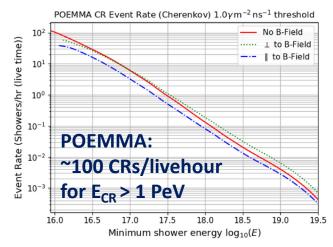
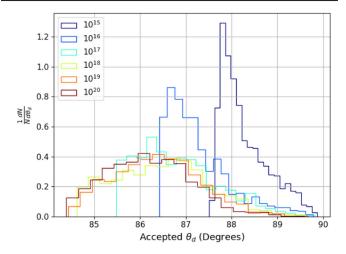



FIG. 15. Integrated expected event rate (events measured above given energy *E*) for above-the-limb UHECR events for the EUSO-SPB2 [upper panel] and POEMMA [lower panel] instruments. Event rate is given per hour of live time (instrument duty cycle for each not taken into account).

Y COSMIC ... PHYS. REV. D **104**, 063029 (2021)

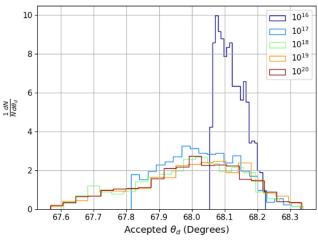


FIG. 14. Normalized distribution of arrival angle θ_d for accepted above-the-limb cosmic rays for different primary energies as measured with the EUSO-SPB2 instrument [upper panel] and POEMMA instrument [lower panel].

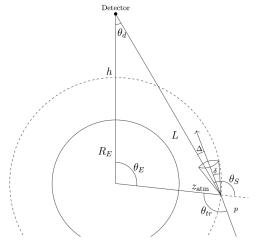


FIG. 1. Geometry of measuring the Cherenkov signal from cosmic rays arriving from above the Earth horizon in the case of a space based instrument.

0.2°

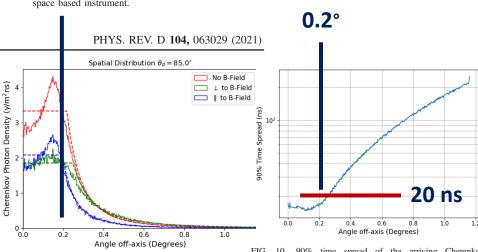


FIG. 10. 90% time spread of the arriving Cherenkov photons from a 100 PeV proton shower as observed from 33 km with $\theta_d=85^\circ$.

Multiple

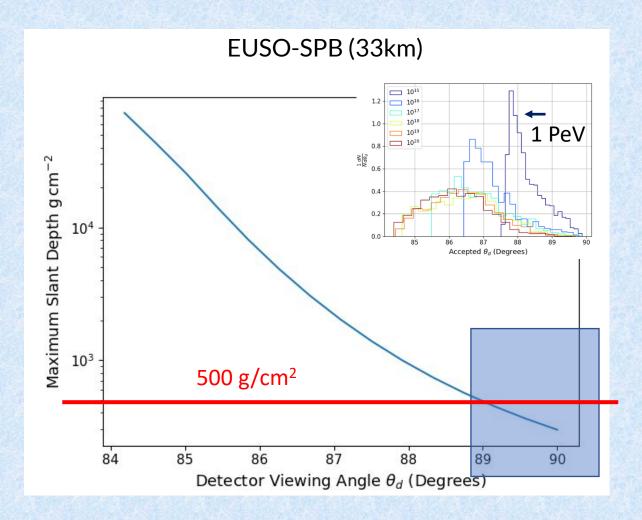
Measurements

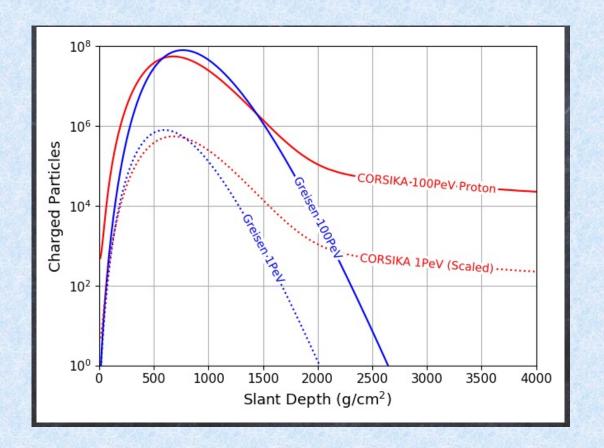
constellation of

See Terzina talk

for one SmallSat.

of CLD with

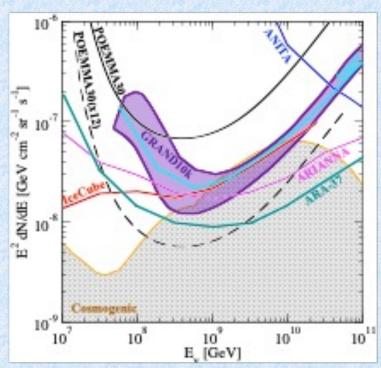

SmallSats?


30

Cosmic Ray Measurements in Rarified Atmosphere

Plots by Austin Cummings (PennState)

Over-the-limb CR measurements (optical Cherenkov, radio) can be also done in the bulk of the EAS and muon tail!



Conclusion and future ...

POEMMA Benefited from being a NASA POEMMA Probe study:

- review determined *No new technology needed*, could benefit from technology developments.
- NASA Probe implementation may allow POEMMA proposal in 2nd NASA Probe AO (2025+)
- SnowMass CF7 UHECR whitepaper (arXiv:2205.05845) recommends proceeding with the development of POEMMA as one of the next generation UHECR experiments (along with GCOS and GRAND).
- Rich portfolio of POEMMA science papers helped perception (at least within NASA community) that a mission like POEMMA, using UHECR, UHE & VHE neutrinos, probes unique and interesting high-energy astrophysics phenomena.

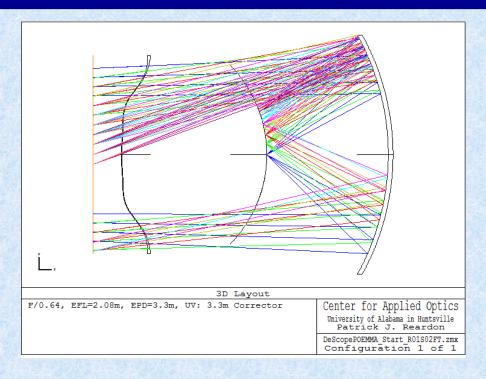
https://heasarc.gsfc.nasa.gov/docs/nuSpaceSim/ end-toend space-based neutrino detection simulation of optical and radio EAS signals allows for the development of combined radio and optical Cherenkov neutrino instruments that leverage the advantage of each method

- Optical Cherenkov is sensitive to neutrinos 2 3 orders of magnitude lower in energy than the radio
- Radio has 100% duty cycle
- Two combined would allow for lower background events

Tool to develop the space-based cosmic neutrino missions:

- Space-based Neutrino Surveyor (POEMMA360) using near limb-viewing Cherenkov telescope with $\Delta \phi = 360^{\circ}$, and would be self-triggering for neutrino transients events while having significant sky coverage to follow-up external ToO alerts.
- Space-based ToO Cherenkov Telescope(s) with modest, few degree FoV, $A_{\rm Eff} \gtrsim 1$ m, and ability to quickly slew to follow-up external ToO alerts, could be a SmallSat format.

POEMMA Mission and Science Performance Publications

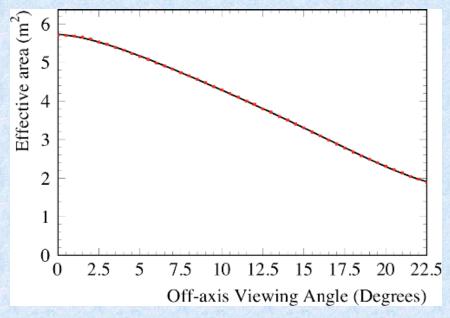


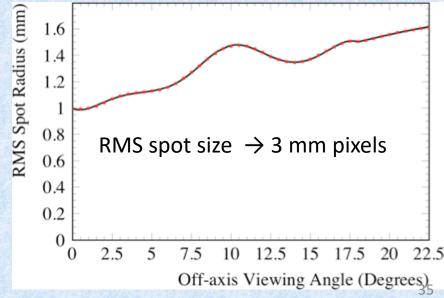
- 1. C. Guepin, F. Sarazin, J. Krizmanic, J. Loerincs, A. Olinto, and A. Piccone, *Geometrical Constraints of Observing Very High Energy Earth-Skimming Neutrinos from Space*, JCAP 2019, 03, 021, arXiv:1812.07596
- 2. M. H. Reno, J. F. Krizmanic, and T. M. Venters, *Cosmic tau neutrino detection via Cherenkov signals from air showers from Earth-emerging taus*, PhysRevD 100, 063010, (2019), arXiv:1902.1128
- 3. L. A. Anchordoqui, D. R. Bergman, M. E. Bertaina, F. Fenu, J. F. Krizmanic, A. Liberatore, A. V. Olinto, M. Hall Reno, F. Sarazin, K. Shinozaki, J. F. Soriano, R. Ulrich, M. Unger, T. M. Venters, and L. Wiencke, *Performance and science reach of POEMMA for ultrahigh-energy particles*, *PhysRevD.101.023012*, *arXiv:1907.03694*T.
- 4. M. Venters, M. Hall Reno, J. F. Krizmanic, L. A. Anchordoqui, C. Guépin, and A. V. Olinto, *POEMMA's target of opportunity sensitivity to cosmic neutrino transient sources*, *PhysRevD.102.123013*, *arXiv:1906.07209*
- 5. A.L. Cummings, R. Aloisio, R., J.F. Krizmanic, Modeling of the Tau and Muon Neutrino-induced Optical Cherenkov Signals from Upward-moving Extensive Air Showers, PhysRevD.103.043017, arXiv:2011.09869
- 6. A.V Olinto, J.F. Krizmanic, and the POEMMA Collaboration, *The POEMMA (Probe of Extreme Multi-Messenger Astrophysics)*Observatory, JCAP 2021, 06, 007
- 7. A.L. Cummings, R. Aloisio, R., J.Eser, J.F. Krizmanic, *Modeling the optical Cherenkov signals by cosmic ray extensive air showers directly observed from suborbital and orbital altitudes,* PhysRevD.104.063029, arXiv:2105.03255
- 8. C. Guépin, A. Aloisio, L.A. Anchordoqui, A. Cummings, J. Krizmanic, A.V. Olinto, M.H. Reno, T.M. Venters, *Indirect dark matter searches at ultrahigh energy neutrino detectors*, PhysRevD.104.083002, arXiv:04446
- 9. L. A. Anchordoqui, M. E. Bertaina, M. Casolino, J. Eser, J.F. Krizmanic, A.V. Olinto, A.N. Otte, T.C. Paul, L.W. Piotrowski, M.H. Reno, F. Sarazin, K. Shinozaki, J.F. Soriano, T.M. Venters, L. Wiencke, **Prospects for macroscopic dark matter detection at space-based and suborbital experiments**, Europhysics Letters 135, id.51001, arXiv: 2104.05131
- 10,2M2H. Reno, L. A. Anchordoqui, A. Bhattacharya, A. Cummings, L. Eser, C. Guépin, J.F. Krizmanic, A.V. Olinto, T. Paul, I. Sarcevic, T. M. Venters, *Neutrino constraints on long-lived heavy dark sector particle decays in the Earth*, PhysRevD.105.055013

POEMMA: Schmidt Telescope details

Two 4 meter F/0.64 Schmidt telescopes: 45° FoV

Primary Mirror: 4 meter diameter

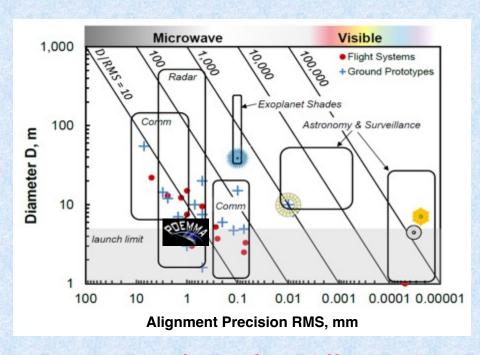

Corrector Lens: 3.3 meter diameter


Focal Surface: 1.6 meter diameter

Optical Area_{EFF}: ~6 to 2 m²

Hybrid focal surface (MAPMTs and SiPM)

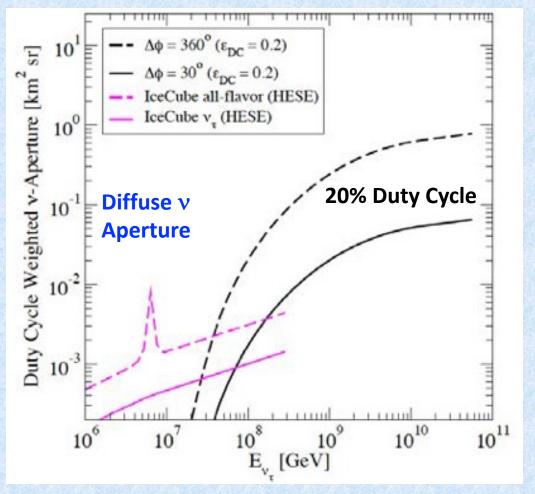
3 mm linear pixel size: 0.084° FoV

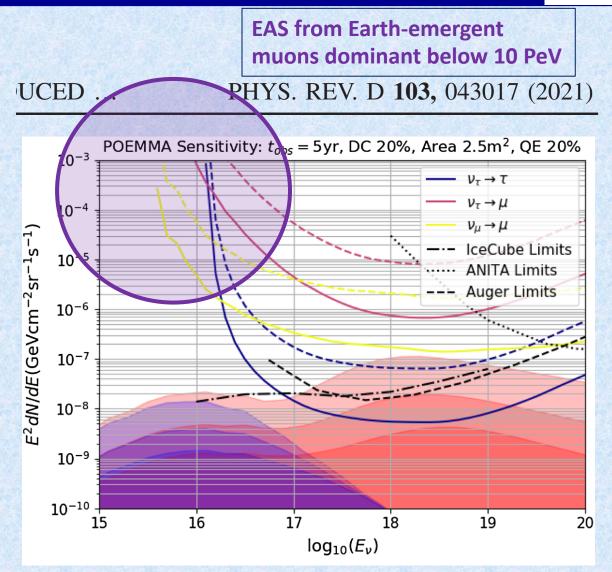


Lightweight Deployable Optics

Imaging ~10⁴ away from diffraction limit

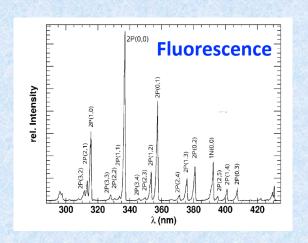
1996: Spartan 207: 14-m diameter 'inflatable' antenna

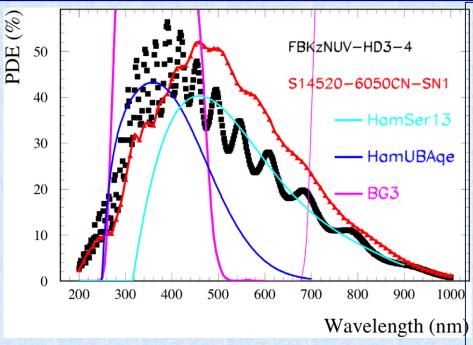

Larger optical collecting area for fluorescence and optical Cherenkov translates to lower energy threshold for detecting EAS and/or increasing geometry factor or azimuthal coverage.

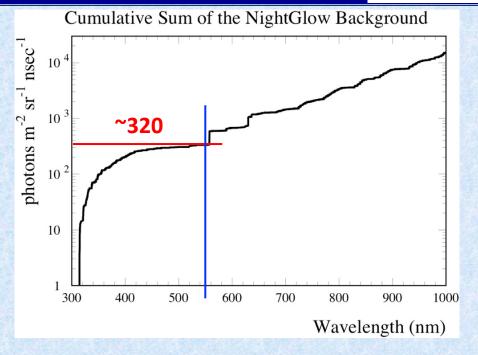


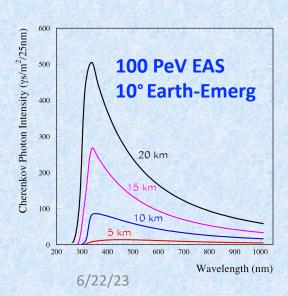
POEMMA VHE Diffuse Neutrino Sensitivity: see PhysRevD.103.043017

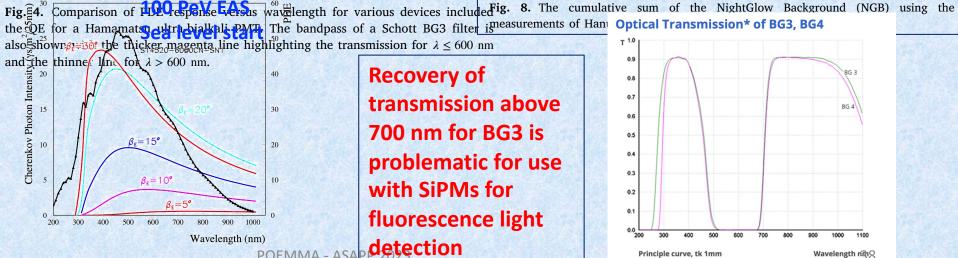
High-Energy Astrophysical Events generates neutrinos (ν_e , ν_μ) and 3 neutrino flavors reach Earth via neutrino oscillations.

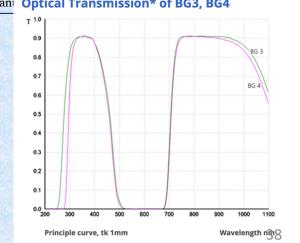







DarkSky Airglow Background NIMA 985 id.164614 (2021)





With friendly permission from SCHOTT Germany

POEMMA Stereo Fluorescence X_{max} Resolution, see PhysRevD.101.023012

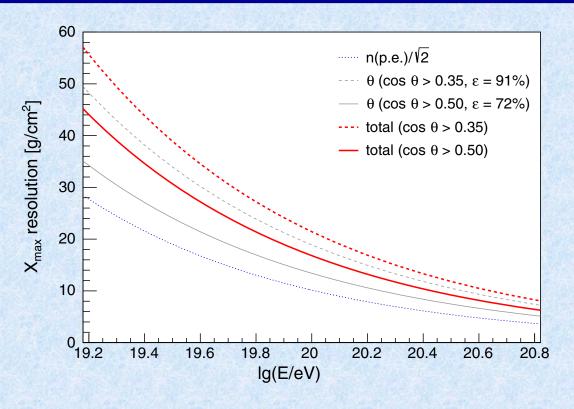


FIG. 17. Preliminary estimate of the X_{max} resolution of PO-EMMA in stereo mode. The contributions from the photoelectron statistics and angular resolution are shown in blue and gray, respectively. The total resolution, obtained by adding both contributions in quadrature, is shown in red for two cuts on the maximum zenith angle.