## ARCADIA

## Depleted monolithic CMOS sensors and very low power readout architectures





### <u>Manuel Rolo (INFN)</u>

on behalf of the **ARCADIA Collaboration** 

ASAPP 2023 Advances in Space AstroParticle Physics Frontier technologies for particle measurements in space

June 19-23, 2023

Perugia (IT)

#### ARCADIA DMAPS R&D at INFN

#### Advanced Readout CMOS Architectures with Depleted Integrated sensor Arrays



#### Fully Depleted Monolithic Active Pixel CMOS sensor technology platform allowing for:

- Active sensor thickness in the range 50 µm to 500 µm;
- Operation in full depletion with fast charge collection by drift, small collecting electrode for optimal signal-to-noise ratio;
- Scalable readout architecture with ultra-low power capability (O(10 mW/cm<sup>2</sup>));
- Compatibility with standard CMOS fabrication processes: concept study with small-scale test structure (SEED), technology demonstration with large area sensors (ARCADIA)
- Technology: LF11is 110nm CMOS node (quad-well, both PMOS and NMOS), high-resistivity bulk
- Custom patterned backside, patented process developed in collaboration with LFoundry



## Sensor Concepts and post-processing

- n-type high resistivity active region + n-epi layer (reduces punchthrough current between p+ and deep pwells)
- sensing electrodes be biased at low voltage (< 1V)
- BSI Reverse-biased junction: depletion grows from back to top



thinning, lithography, backside p+ implantation and laser annealing, insulator and metal deposition



thinning, backside p+ implantation and laser annealing





thinning down to 100 or 300µm total thickness

L. Pancheri

300-µm Active Substrate," in IEEE Transactions on Electron -ully Depleted MAPS in 110-nm CMOS Process With 100-

## **ARCADIA Technology demonstrators**







- ARCADIA-MD3 Main Demonstrator
- MAPS and test structures for PSI (CH)
- MATISSE Low Power (ULP front-end for space instruments)
- pixel and strip test structures down to 10µm pitch
- ASTRA 64-channel mixed signal ASIC for Si-Strip readout
- 32-channel monolithic strip and fully-functional readout electronics
- (ER2) HERMES: small-scale demonstrator for fast timing
- (ER3) Small-scale demonstrator of a X-ray multi-photon counter
- (ER3) Wafer splits with timing layer, new R&D towards <<50 ps timing performance: test structures and
- (ER3) MADPIX: multi-pixel active demonstrator chip for fast timing

## **ARCADIA-MD3: Chip Floorplan**





#### **Top Padframe**

**Auxiliary supply, IR Drop Measure** 

#### **Matrix**

512x512 pixels, Double Column arrangement

#### End of Sector (x16)

Reads and Configures 512x32 pixels

#### **Sector Biasing (x16)**

Generates I/V biases for 512x32 pixels

#### **Periphery**

SPI, Configuration, 8b10b enc, Serializers

#### **Bottom Padframe**

Stacked Power and Signal pads

## **ARCADIA-MD3: Integration**







- The Matrix is composed of 16 identical Sectors (32x512), each of which contains 16 Double Columns
- \* Each 2x512 Double Column is composed of 16 2x32-pixel Cores: the minimum "synthesisable" entity bundling together 8 Pixel Regions for optimal PNR and Signal Propagation
- Clock-less matrix integrated on a power-oriented flow

## **ARCADIA-MD3: Chip Architecture**





- Pixel size 25 μm x 25 μm, Matrix core 512 x 512, 1.28 x 1.28 cm<sup>2</sup> silicon active area, "side-abuttable"
- Triggerless data-driven readout and low-power asynchronous architecture with clockless pixel matrix
- Event rate up to 100 MHz/cm<sup>2</sup> (post-layout simulations, to be demonstrated: test-beam in late 2023)
- High-rate operation (16 Tx): 17-30 mW/cm<sup>2</sup> depending on transceiver driving strength (measured)
- Low-power operation (1 Tx): **10 mW/cm²** (<u>measured:</u> characterisation data in next slides in low-power mode)

## **ARCADIA-MD3: Peripheral Dataflow**



Each sector has an independent readout and output link when operating in High Rate Mode



- Sector data is sent out (8b10b encoded) via dedicated 320MHz DDR Serialisers
- In Low Rate Mode, the first serialiser processes data from all the sections. The other serialisers and C-LVDS TXs<sup>(\*)</sup> are powered off in order to reduce power consumption.

### High Rate mode Sector 15 Sector Sector Sector Sector 0

### Low Rate mode Sector Sector Sector Sector Sector **FIFO**

<sup>\* &</sup>quot;A 2 Gbps custom LVDS transceiver for the ARCADIA project", talk at IEEE NSS-MIC 2021

## **ARCADIA-MD3: charged particles**

400

300

200

100







(tilted sensor)



<sup>90</sup>Sr (collimated 1mm)

Incremental map



90**Sr** (uncollimated)













600

800 1000 1200 1400

## MD3 cosmic data: setup and cluster size













- Cosmic ray data taking: 1 week
- 3-plane MD3 installed on a black box, neither temperature control nor parameter optimisation (pixel discriminator  $V_{th}$ still to be equalised at double-column level).
- Threshold 290 e-, MPV = 4 pixels
- More than 90% of clusters with less than 6 fired pixels













## MD3 cosmic data: x-y residuals



Preliminary data without mechanical alignment (3-plane setup without external references), ignoring multiple scattering:

#### Selection criteria:

- 1 cluster per plane
- dt <= 10 clock cycles
- Cluster dimension <=4 in all planes

#### Selected ~46% of the synchronised events







## Pixel/Strip Test Structures







#### **\*** pixels come in different flavours:

- Pseudo-Matrices of 1x1 and 2x2 mm<sup>2</sup>
- $50 \mu m$  (5 variants)
- 25 μm (3 variants)
- 10  $\mu$ m (6 variants)

#### and strips as well:

- 25  $\mu$ m pitch pixelated + 25  $\mu$ m continuous (10+10) [2 variants]
- 10 µm pixelated (4 groups of 12 strips connected to pads) [4 variants]

## FD Monolithic Active Microstrips



- Design and Production of continuous and "pixelised" strips, range 10 100µm pitch
- Proof-of-concept: CMOS monolithic strip block and readout electronics (active sensor area is  $12800 \times 3200 \, \mu m^2$ )



ARCADIA Depleted monolithic CMOS sensors and very low power readout architectures

Sensors: TCAD Simulation Study of an Innovative Fully Depleted Monolithic Active Microstrip Design Concept. Sensors 2021, 21, 1990.

### FD-MAMS 32-channel architecture

- preAmp: CSA + TP injection circuit
- Slow Shaper branch for charge measurement with externally controlled S&H circuit
- Analogue readout: MUX-differential output buffer
- Digital readout: Wilkinson ADC and serialiser
- Trigger output: Fast Shaper branch providing a fast-OR output



"A mixed-signal read out ASIC for silicon micro-strip detectors" (Mattia Barbanera), today at 12:15.

## FD Monolithic Active Microstrips















### X-ray photon-counting demonstrator





- Project tapeout with ARCADIA ER3
- Shall allow to test both a hybrid assembly of a CdTe detector and a fully-depleted CMOS silicon sensor X-ray imager (half of the matrix with bump pad connections for flip-chip assembly)
- (left) reticle floorplan for the ARCADIA engineering run and (top) CAD layout of the X-ray ASIC [13.4 x 4.2 mm] minidemonstrator

## **ARCADIA Sensor: R&D for fast timing**

ARCADIA Depleted monolithic CMOS sensors and very low power readout architectures

- partial lot of HR and p+ wafer splits implement an extra gain layer added to the sensor;
- first small-scale demonstrator 4 x 16 mm<sup>2</sup>:
- 8 matrices (64 pixel pads each) implementing different sensor and front-end flavours:
- $250 \times 100 \mu m^2$  pixel pads;
- 64 analogue outputs on each side, rolling shutter of single matrix readout;







## **ARCADIA Sensor: R&D for fast timing**





**TCAD** simulations with MIP-like signal



- 50µm active thickness, different gain dose splits,
  gain target: range 10 30
- first 200µm (BSI) devices powered on, C-V curve measured on the pad with gain suggest that the gain layer is present, though with n-type substrate the profile can not be completely evaluated
- ◆ 50µm devices just received from dicing, tests starting soon!



#### **ARCADIA FD-MAPS: Status and Perspectives**







- Sensor R&D and Technology, CMOS IP Design and Chip Integration, Data Acquisition
- MD3: system-grade full-chip FDMAPS for Medical (pCT), Future Leptonic Colliders and Space Instruments
- Scalable FDMAPS architecture with very low-power: 10 mW/cm<sup>2</sup>
- Fully-depleted monolithic active micro strips with fully-functional embedded readout electronics
- Ongoing R&D for the implementation of monolithic CMOS sensors with gain layer for fast timing
- Custom BSI process allow to develop fully-depleted thick sensors (400µm) for soft X-ray imaging











## Thank you for your time!





Manuel Rolo (INFN),

on behalf of the ARCADIA Collaboration.



### Front-end FEB-MD3 and DAQ

















- 2 Samtec FireFly connectors for ASIC signals (Clock, SPI, Data)
- Connection to external low jitter Clock (via SMA connectors)
- Bias to the DMAPS backside or (wirebonded) to top pads
- Independent LDOs for IO Buffers, Analog Core, Digital Core
- PCB through-hole for matrix BSI
- custom FMC-to-Firefly breakout board



### **ARCADIA** pixel test structures



Small pixel arrays with all the pixels connected in parallel.

Pixel pitches: 50um - 25um - 10um

#### N-well guard rings Sensor nodes pwell (GND)

#### **Target characterisation:**

- Electrical characterisation: IV and CV curves (at the probe station)
- Pulsed laser characterisation
- Radiation hardness tests (neutrons, X-rays)
- TCAD simulations have shown a very good predictive power, after tuning the process parameters with IV curves (epi thickness, doping)
- Almost all the test structures from all the wafers can be operated properly (only a few defective ones were spotted) and with good wafer-to-wafer reproducibility





#### **ARCADIA** sensor characterisation



IV and CV measurements of test-structures: proven functionality, stable operation at full depletion, and good agreement with TCAD simulations







ARCADIA Depleted monolithic CMOS sensors and very low power readout architectures



#### **ARCADIA** sensor characterisation



IV and CV measurements of test-structures: proven functionality, stable operation at full depletion, and good agreement with TCAD simulations











#### Pulsed laser and radiation damage studies



- Infrared laser diode @ 1060nm, 50ps FWHM: generation in the whole active thickness
- Pixel array test structures with 100um active width (maskless backside p+ implantation)







### **Sensor Biasing**



The chip periphery behaves like a resistor: For substrates of Type 1 and 2, substrate bias can be applied both from the bottom and from the top





V depl and VPT are very similar for the two considered biasing schemes



### Test structures selection and packaging



At least 4 dies with test structures extracted from each wafer in different positions, to verify uniformity

A few devices are bonded for laser irradiation tests: position-dependent signal and time response to short laser pulses (<100ps)











### **ARCADIA MD3 DAQ Hardware: Telescope**



ARCADIA 미미미미미미미미



### DAQ firmware: data-push architecture





### DAQ firmware: triggered architecture





### Pixel Readout ASIC for photon-counting **Architecture and Chip Design**





each pixel is built with 2x2 50 µm cores







- The arbitration logic module compares local ToT with 8 neighbour ToTs to decide if local pixel has the largest read of the generated charge and then the hit signal is pulled up high
- The deposited energy is obtained by the ToT counter in which the numbers of cycles of oscillator clock is recorded
- A digital comparator assigns an energy bin to the event





Figure: Data from a super-column (8 double columns) is serialised and sent off-chip with a C-LVDS transceiver

# Pixel Readout ASIC for photon-counting Sensor and simulation setup



X-ray energy range: 10 - 100 keV, Photoelectric + Compton effects

 $50~\mu m$  pitch,  $400~\mu m$  thick ARCADIA pixel sensor

Punch through onset  $V_{pt} = -363.6 \text{ V}$ 

Capacitance @ V<sub>pt</sub> = 12.8 fF

Voltage at collection electrode = 0.8 V





#### Scope:

- study charge sharing
- charge collection time < shaping time  $\sim$  100 ns

#### **Sentaurus TCAD**

electric and weighting field maps

#### Allpix2

- Monte Carlo signal generation
- 5x5 pixel matrix





### Pixel Readout ASIC for photon-counting Signal simulation for 50 keV photons



ARCADIA

#### **Compton scattering**

- Fraction of energy transferred to recoil electron: 9% mean, 17% max
- Charge deposit: 0.2 fC mean, 0.38 fC max

#### **Photoelectric absorption**

- K-shell 1s electron binding energy = 1.839 keV
- Kinetic energy of K-shell 1s photoelectrons
- = 50 keV 1.839 keV
- Charge deposit: 2.14 fC



Central pixel signal only



Full 5x5 matrix signal

#### **Monte Carlo simulation**

- 100k incoming photons
- Perpendicular incidence
- Random incidence point over the CENTRAL pixel of the 5x5 matrix

Detected photons (Compton + photoelectric, no threshold) = 3528 Detection efficiency = ~4%

