

New technologies for superconducting magnets in space

Roberto Iuppa^{1,2}, William J. Burger², Rita Carpentiero³, Enrico Chesta⁴, Magnus Dam⁵, Gijs de Rijk⁶, Lucio Rossi^{7,5}

(1) Università di Trento, (2) INFN TIFPA – Trento, (3) Agenzia Spaziale Italiana, (4) CERN, (5) INFN Milano, (6) Retired, formerly CERN, (7) Università di Milano

"future CR detection in space"

see solicited talk by S. Schael

AMS-100: The next generation magnetic spectrometer in space – An international science platform for physics and astrophysics at Lagrange point 2

S. Schael ^a $\stackrel{>}{\sim}$ \boxtimes , A. Atanasyan ^b, J. Berdugo ^c, T. Bretz ^d, M. Czupalla ^e, B. Dachwald ^e, P. von Doetinchem f, M. Duranti g, H. Gast a A, W. Karpinski a, T. Kirn a, K. Lübelsmeyer a, C. Maña c, P.S. Marrocchesi h, P. Mertsch i, I.V. Moskalenko j, T. Schervan k, M. Schluse L., J. Zimmermann k

https://doi.org/10.1016/j.nima.2019.162561

Open Access Feature Paper Article

Design of an Antimatter Large Acceptance Detector In Orbit (ALADInO)

https://doi.org/10.3390/instruments6020019

solenoids

1st solenoid

Y. Makida et al., IEEE Transactions on Applied Superconductivity, TASC.2009.2017946

A thin superconducting solenoid for BESS-Polar I (2004, 8.5 days) and II (2009, 25 days ultra-thin). Technological breakthrough.

TABLE I SOLENOID PARAMETERS

2nd solenoid

Magnet Parameters

iviagnet i arameters	2114 301611014	130 301011010	
Coil nominal diameter (m)	0.9	Same	
Coil Length (m)	1.4	Same	
Coil Thickness (center/notch) (mm)	3.4 / 3.7	Same	
Coil Weight (kg)	43	Same	
Cryostat (outer dimension) (m)	φ 1.06× L3.2	Same	
(Inner bore) (m)	φ 0.80	Same	
Central magnetic field (T)	$0.8 \ (\sim 1.0)$	Same	
Magnetic uniformity (%)	$\leq \pm 9$	Same	
Current (A)	380 (~ 476)	Same	
Turns	2829	Same	
Inductance (H)	3.49	Same	
Stored Energy (kJ)	252 (~395)	Same	
E/M Ratio in coil (kJ/kg)	5.9 (~ 9.2)	Same	
Material @half-wall (g/cm ²)	2.52	Same	
LHe Capacity (l)	520	400	
LHe Life Time (day)	21	10	
Magnet weight (kg)	450	410	
Conductor Parameters			
Type	Al clad NbTi/Cu	ı monolith	
Overall size with insulation (mm ²)	0.9×1.2	Same	
NbTi / Cu core diameter (mm)	0.60	Same	
Critical current (A) @2.5T, 4.2 K	> 750	Same	
Area ratio (NbTi/Cu/Al)	[bTi/Cu/Al) 1/0.81/3.9		
Insulation (µm)	Kapton 2×20	Same	
Additive into Al stabilizer	Ni (5000 ppm)	Same	
Al clad process	Co-extrusion	Same	
RRR (Al stabilizer, Cu, over all)	286, 55, 116	Same	
Yield strength (NbTi/Cu @RT) (MPa)	580 Jungan 20th		
Yield strength (Al @4.2 K) (MPa)	100	Same	
Yield strength (over all @4.2 K) (MPa)	240	Same	

solenoids

TABLE I SOLENOID PARAMETERS

Magnet Parameters	2nd solenoid	1st solenoid	
Coil nominal diameter (m)	0.9	Same	
Coil Length (m)	1.4	Same	
Coil Thickness (center/notch) (mm)	3.4 / 3.7	Same	
Coil Weight (kg)	43	Same	
Cryostat (outer dimension) (m)	φ 1.06× L3.2	Same	
(Inner bore) (m)	φ 0.80	Same	
Central magnetic field (T)	0.8 (~ 1.0)	Same	
Magnetic uniformity (%)	$\leq \pm 9$	Same	
Current (A)	380 (~ 476)	Same	
Turns	2829	Same	
Inductance (H)	3.49	Same	
Stored Energy (kJ)	252 (~395)	Same	
E/M Ratio in coil (kJ/kg)	5.9 (~ 9.2)	Same	
Material @half-wall (g/cm ²)	2.52	Same	
LHe Capacity (t)	520	400	
LHe Life Time (day)	21	10	
Magnet weight (kg)	450	410	
Conductor Parameters			
Type	Al clad NbTi/C	ı monolith	
Overall size with insulation (mm ²)	0.9×1.2	Same	
NbTi / Cu core diameter (mm)	0.60	Same	
Critical current (A) @2.5T, 4.2 K	> 750	Same	
Area ratio (NbTi/Cu/Al)	1/0.81/3.9	Same	
Insulation (µm)	Kapton 2×20	Same	
Additive into Al stabilizer	Ni (5000 ppm)	Same	
Al clad process	Co-extrusion	Same	
RRR (Al stabilizer, Cu, over all)	286, 55, 116	Same	
Yield strength (NbTi/Cu @RT) (MPa)	580 Ju	ır san2 0th	
Yield strength (Al @4.2 K) (MPa)	100	Same	
Yield strength (over all @4.2 K) (MPa)	240	Same	

NIAC, S. Westover, MAARSS, 2012

Y. Makida et al., IEEE Transactions on Applied Superconductivity, TASC.2009.2017946

A thin superconducting solenoid for BESS-Polar I (2004, 8.5 days) and II (2009, 25 days ultra-thin). Technological breakthrough.

magnetic shields to protect astronauts

Pumpkin configuration - SR2S project (Battiston 2016)

NIAC, E. D'Onghia, Crew-HaT (Halbach torus), 2022

NIAC, S. Westover, MAARSS, 2012

Roberto luppa

Advances in Space AstroParticl

Advances in Space AstroParticle

Roberto luppa

AMS-02 superconducting magnet

The AMS-02 detector in the cargo bay of the space shuttle for the flight to ISS

3-D artist view of the AMS-02 magnet system.

AMS-02 magnet configuration producing a dipole field

B. Blau *et al.*, "The superconducting magnet system of AMS-02 - a particle physics detector to be operated on the International Space Station," in *IEEE Transactions on Applied Superconductivity*, vol. 12, no. 1, pp. 349-352, March 2002, doi: 10.1109/TASC.2002.1018417.

Advances in Space AstroParticle

Roberto luppa

AMS-02 superconducting magnet

The AMS-02 detector in the cargo bay of the space shuttle for the flight to ISS

3-D artist view of the AMS-02 magnet system.

AMS-02 magnet configuration producing a dipole field

B. Blau *et al.*, "The superconducting magnet system of AMS-02 - a particle physics detector to be operated on the International Space Station," in *IEEE Transactions on Applied Superconductivity*, vol. 12, no. 1, pp. 349-352, March 2002, doi: 10.1109/TASC.2002.1018417.

"Since the magnet design is optimized with respect to very low heat losses, the magnet is intended to be operated for 3 years without refilling."

B. Blau et al., NIMA (2004) 518,139-142, https://doi.org/10.1016/j.nima.2003.10.043.

"With Obama administration plans to extend International Space Station operations beyond 2015, the decision was made by AMS management to exchange the AMS-02 superconducting magnet for the non-superconducting magnet"

Advances in Space AstroParticle Physics - 2023

June 20th

"High-temperature"

Readapted from https://en.wikipedia.org/wiki/High-temperature_superconductivity, visited on July 10th, 2022

Robustness, efficiency and lifetime of the cooling system are among the most limiting requirements for the use of SC magnets in space. They all depend on the difference T_{env}-T_{op}.

James Webb hot/cold sides at L2

High-Temperature Superconductors

Zeitschrift für Naturforschung B, vol. 75, no. 1-2, 2020, pp. 3-14. https://doi.org/10.1515/znb-2019-0103

June 20th

High-Temperature Superconductors

Zeitschrift für Naturforschung B, vol. 75, no. 1-2, 2020, pp. 3-14. https://doi.org/10.1515/znb-2019-0103

AMS-02 Nb-Ti/Cu 3000 A/mm2 at 5T at 4.2K (specs from doi:10.1109/TASC.200 2.1018417)

High-Temperature Superconductors

Roberto luppa

Advances in Space AstroParticle
Physics - 2023

High-Temperature Superconductors

EuCARD-2 is co-funded by the partners and the European Commission under Capacities 7th Framework Programme, Grant Agreement 312453

WP10 Future Magnets for post-LHC colliders (study, test and design solutions using Bi-2212 and YBCO for HTS dipole magnets)

Roberto luppa

Advances Physics S pa \bigcirc **AstroParticle**

HTS Demonstrator Magnet for Space (HDMS)

Roberto luppa

HDMS project goals (Jun. 2018- Feb. 2022)

- Conceptual design of a toroidal HTS magnet for a spectrometer in space
- Design and manufacture a demonstrator coil for the toroidal magnet
- Test and make it ready up to TRL 6

HTS Demonstrator Magnet for Space (HDMS)

Roberto luppa

June 20th

HDMS project goals (Jun. 2018- Jun. 2022)

- Conceptual design of a toroidal HTS magnet for a spectrometer in space
- Design and manufacture a demonstrator coil for the toroidal magnet
- Test and make it ready up to TRL 6

OPEN ACCESS OPEN ACCESS			
IOP Publishing Supercond. Sci. Technol. 33 (2020) 044012 (12pp)	Superconductor Science and Technology https://doi.org/10.1088/1361-6668/ab669b		
Conceptual design of a high temperature superconducting magnet for a particle physics experiment in space			
Magnus Dam ¹ ⊚, Roberto Battiston ^{2,3} ⊚, William Jerome Burger ³ ⊚, Rita Carpentiero ⁴ , Enrico Chesta ¹ ⊚, Roberto luppa ^{2,3} ⊚, Gijs de Rijk ¹ ⊚ and Lucio Rossi ^{1,5} ⊚			
 CERN, European Organization for Nuclear Research, CH-1211 Geneva 23, Sw Department of Physics, University of Trento, I-38122 Trento TN, Italy TIFPA, Trento Institute for Fundamental Physics and Applications, I-38123 Po ASI, Italian Space Agency, I-00133 Rome RM, Italy On leave from: Department of Physics, University of Milan, I-20133 Milano M 	vo TN, Italy		
E-mail: magnus.dam@cern.ch Supercond. Sci.	Technol. 33 044012 (2020)		

HTS Demonstrator Magnet for Space (HDMS)

Roberto Iuppa

HDMS project goals (Jun. 2018- Feb. 2022)

- Conceptual design of a toroidal HTS magnet for a spectrometer in space
- Design and manufacture a demonstrator coil for the toroidal magnet
- Test and make it ready up to TRL 6
- Focus of the next part of this presentation
- Other useful links:
 - https://knowledgetransfer.web.cern.ch/aero space/hdms
 - M. Dam et al., PoS ICRC2021 498 (2021)

AMaSED:

Advanced Magnetic Spectrometer Experimental Demonstrator

Roberto luppa

—

dvances in Space AstroPa

June 20th

Coil design

- Two pancake coils
- Racetrack-like shape
- No-insulation coil
- Two-tape-stack SuperPower HTS cable (face-to-face)
- Tape width: 12 mm
- Total HTS tape length: 724 m
- Inductance: L = 46.6 mH
- Center magnet constant: $\alpha_0 = 1.125 \text{ T/kA}$
- Peak magnet constant: $\alpha_m = 3.75 \text{ T/kA}$

STATE STATE OF THE STATE OF THE

Roberto Iuppa

dvances in Space AstroParticle

June 20th

AMaSED full design

Conductor and cable configuration

SuperPower 2G HTS tape

Description	Value	Unit
Tape width	12	mm
Tape thickness	97	μm
Hastelloy substrate thickness	50	μm
ReBCO thickness	1.6	μm
Silver thickness	3.8	μm
Copper stabilizer thickness	40	μm
$I_{\rm c}$ at 77 K, self-field	0.4	kA

Cable configuration

- No-insulation winding technique
- Two-tape stack
- Dry wound with first and last turns soldered

Roberto luppa

dvances in Space AstroParticle Physics - 2023

Coil assemblies

NONOIOUS SANISANIA SANISANI SANISAN

Roberto luppa

Inner and outer copper bands

Opening in outer copper band and clamping.

Advances in Space AstroParticle Physics - 2023

Coil insulation and mechanical structure

Roberto luppa

- - Single-piece magnet former in Aluminum 2050-T84

- 1.5 mm–3 mm thick G11 fiberglass
- Break down voltage greater than 1000 V (largest voltage measured over coil was 0.1 V).

Magnetic critical current measurements

Figure 3. Locations of temperature sensor and voltage taps on coil assemblies and interconnection block.

Figure 4. Measurement for $T_{\rm op} = 40 \, {\rm K}$ where we increased the operating current $I_{\rm op}$ in steps until we approached the magnet critical current $I_{\rm mc}$.

Roberto luppa

Figure 5. The operating current $I_{\rm op}$ as a function of the convergence value of the central magnetic flux density B_0 for $T_{\rm op} = 40 \, \rm K$.

Coil parameter estimation

Supercond. Sci. Technol. 36 (2023) 014007

Figure 6. Circuit diagram for the model of a no-insulation coil.

Symbol	Description			
$\overline{\alpha_0}$	Center magnet constant			
$lpha_{ m m}$	Peak magnet constant			
au	Magnet leftging time constant			
R_r	Radial resistance			
$I_{ m mc}$	Magnet critical current			
$\max I_{\theta}$	Maximum achieved I_{θ}			
$\max B_0$	Maximum achieved B_0			
$\max B_{\mathrm{m}}$	Maximum achieved $B_{\rm m}$			

Figure 7. Comparison of simulation results with measurement data for $T_{\rm op} = 40\,\rm K$ when the identified parameters are used in the model. No measurement data is available for $B_{\rm m}$.

Roberto luppa

Advances in Space AstroParticle Physics - 2023

Achieved performance for AMaSED-2

Roberto luppa

Symbol	Description	Value at 77 K	Value at 60 K	Value at 40 K	Value at 20 K	Value at 10 K	Unit
$lpha_0$	Center magnet constant	1.09	1.08	1.09	1.05	1.03	T/kA
$lpha_{ m m}$	Peak magnet constant	3.63	3.60	3.63	3.50	3.43	T/kA
au	Time constant	80.4	102	287	785	1190	S
R_r	Radial resistance	579	458	162	59.4	39.3	$\mu\Omega$
$I_{\rm c}$	Critical current	0.226	0.537	1.22	2.32	2.94	kA
$\max B_0$	Maximum achieved B_0	0.226	0.537	1.27	2.32	2.91	T
max B _m	Maximum achieved $B_{ m m}$	0.755	1.79	4.22	7.73	9.71	Т

AstroParticle

Roberto luppa

Next steps

ASTROTOR project just funded by Italian ministry for research, targeting:

- thermal design of a toroidal magnet for different scenarios (ball. pathfinder/LEO mission /L2 mission)
- possibly very high-field beam tests

PRIN

Portale dei bandi PRIN della Direzione Generale della Ricerca del MUR

HDMS – AMASED coil

CSES – HEPD-02 tracking module

Conclusions

- Large acceptance and long operation time spectrometers require HTS magnets
- The HDMS team constructed and successfully tested an HTS demonstrator magnet for space
- AMaSED-2 features important innovations:
 - No-insulation winding technique
 - Self-protection against quenches
 - Copper-bands to transfer current
- AMaSED-2 performs better than expected in the range 10-77K
- All solutions adopted are space-compliant and immediately scalable
- Cooling system design not been addressed by the HDMS team
- HDMS delivered the most advanced HTS magnet prototype for space applications, an essential starting point for any future enterprise to detect high-rigidity antimatter in cosmic rays.

A STANDIOLOS

Roberto luppa

Advances in Space AstroParticl Physics - 2023

- Magnus Dam, William Jerome Burger, Rita Carpentiero, Enrico Chesta, Roberto Iuppa, Glyn Kirby, Gijs de Rijk, and Lucio Rossi. Manufacturing and testing of AMaSED-2: a no-insulation high-temperature superconducting demonstrator coil for the space spectrometer ARCOS, Supercond. Sci. Technol. 36, 014007 (2022).
- Magnus Dam, William Jerome Burger, Rita Carpentiero, Enrico Chesta, Roberto Iuppa, Gijs de Rijk, and Lucio Rossi.
 Design and modeling of AMaSED-2: A high temperature superconducting demonstrator coil for the space spectrometer ARCOS, IEEE Trans. Appl. Supercond. 32, 4500105 (2022).
- Magnus Dam, William Jerome Burger, Rita Carpentiero, Enrico Chesta, Roberto Iuppa, Gijs de Rijk, and Lucio Rossi. A
 high temperature superconducting demonstrator coil for ARCOS: a novel toroidal magnetic spectrometer for an
 astroparticle physics experiment in space, PoS Proc. Sci. 394, 498 (2021).
- Magnus Dam, Roberto Battiston, William Jerome Burger, Rita Carpentiero, Enrico Chesta, Roberto Iuppa, Gijs de Rijk, and Lucio Rossi. Conceptual design of a high temperature superconducting magnet for a particle physics experiment in space, Supercond. Sci. Technol. 33, 044012 (2020).

co_{urtesy of M. Dam}

Central magnetic field

$$B_0 = \alpha_0 I_{\theta}$$

The center magnet constant α_0 must be determined from measurements. Differentiation yields:

$$\dot{B}_0 = \frac{R_r + R_\theta}{L} \left(\alpha_0 \frac{R_r}{R_r + R_\theta} I_{\text{op}} - B_0 \right)$$

In the limit $R_{\theta} \rightarrow 0$ we get the approximation

$$\dot{B}_0 = \frac{\alpha_0}{\tau} I_{\rm op} - \frac{1}{\tau} B_0, \qquad \tau = \frac{L}{R_r} \tag{1}$$

Rewrite to vector notation:

$$\dot{B}_0 = \begin{bmatrix} I_{\text{op}} & B_0 \end{bmatrix} \begin{bmatrix} \xi_1 \\ \xi_2 \end{bmatrix}, \qquad \xi_1 = \frac{\alpha_0}{\tau}, \quad \xi_2 = -\frac{1}{\tau}$$
 (2)

Insert the measurement data:

$$\begin{bmatrix} \dot{B}_{0}(t_{1}) \\ \dot{B}_{0}(t_{2}) \\ \vdots \\ \dot{B}_{0}(t_{m}) \end{bmatrix} = \begin{bmatrix} I_{\text{op}}(t_{1}) & B_{0}(t_{1}) \\ I_{\text{op}}(t_{2}) & B_{0}(t_{2}) \\ \vdots & \vdots \\ I_{\text{op}}(t_{m}) & B_{0}(t_{m}) \end{bmatrix} \begin{bmatrix} \xi_{1} \\ \xi_{2} \end{bmatrix}$$
(3)

This is an regression problem that can be solved for ξ_1 and ξ_2 .

courtesy of M. Dam

SuperPower HTS ReBCO tape:

- 12 mm wide, 97 μm thick
- Angle dependence: worst case conditions (we conservatively assume *B*-field perpendicular to tape surface)
- Field dependence: Robinson Research Institute HTS Wire database, extrapolated to lower temperatures and higher flux densities

Physics -2023 AstroParticle

88

Static structural

[MPa]

Equivalent (von-Mises) Stress $\,$ Deformation Scale Factor: 14

