New technologies for superconducting magnets in space Roberto Iuppa^{1,2}, William J. Burger², Rita Carpentiero³, Enrico Chesta⁴, Magnus Dam⁵, Gijs de Rijk⁶, Lucio Rossi^{7,5} (1) Università di Trento, (2) INFN TIFPA – Trento, (3) Agenzia Spaziale Italiana, (4) CERN, (5) INFN Milano, (6) Retired, formerly CERN, (7) Università di Milano "future CR detection in space" see solicited talk by S. Schael AMS-100: The next generation magnetic spectrometer in space – An international science platform for physics and astrophysics at Lagrange point 2 S. Schael ^a $\stackrel{>}{\sim}$ \boxtimes , A. Atanasyan ^b, J. Berdugo ^c, T. Bretz ^d, M. Czupalla ^e, B. Dachwald ^e, P. von Doetinchem f, M. Duranti g, H. Gast a A, W. Karpinski a, T. Kirn a, K. Lübelsmeyer a, C. Maña c, P.S. Marrocchesi h, P. Mertsch i, I.V. Moskalenko j, T. Schervan k, M. Schluse L., J. Zimmermann k https://doi.org/10.1016/j.nima.2019.162561 Open Access Feature Paper Article #### Design of an Antimatter Large Acceptance Detector In Orbit (ALADInO) https://doi.org/10.3390/instruments6020019 ## solenoids 1st solenoid Y. Makida et al., IEEE Transactions on Applied Superconductivity, TASC.2009.2017946 A thin superconducting solenoid for BESS-Polar I (2004, 8.5 days) and II (2009, 25 days ultra-thin). Technological breakthrough. TABLE I SOLENOID PARAMETERS 2nd solenoid Magnet Parameters | iviagnet i arameters | 2114 301611014 | 130 301011010 | | |---|------------------------|---------------|--| | Coil nominal diameter (m) | 0.9 | Same | | | Coil Length (m) | 1.4 | Same | | | Coil Thickness (center/notch) (mm) | 3.4 / 3.7 | Same | | | Coil Weight (kg) | 43 | Same | | | Cryostat (outer dimension) (m) | φ 1.06× L3.2 | Same | | | (Inner bore) (m) | φ 0.80 | Same | | | Central magnetic field (T) | $0.8 \ (\sim 1.0)$ | Same | | | Magnetic uniformity (%) | $\leq \pm 9$ | Same | | | Current (A) | 380 (~ 476) | Same | | | Turns | 2829 | Same | | | Inductance (H) | 3.49 | Same | | | Stored Energy (kJ) | 252 (~395) | Same | | | E/M Ratio in coil (kJ/kg) | 5.9 (~ 9.2) | Same | | | Material @half-wall (g/cm ²) | 2.52 | Same | | | LHe Capacity (l) | 520 | 400 | | | LHe Life Time (day) | 21 | 10 | | | Magnet weight (kg) | 450 | 410 | | | Conductor Parameters | | | | | Type | Al clad NbTi/Cu | ı monolith | | | Overall size with insulation (mm ²) | 0.9×1.2 | Same | | | NbTi / Cu core diameter (mm) | 0.60 | Same | | | Critical current (A) @2.5T, 4.2 K | > 750 | Same | | | Area ratio (NbTi/Cu/Al) | [bTi/Cu/Al) 1/0.81/3.9 | | | | Insulation (µm) | Kapton 2×20 | Same | | | Additive into Al stabilizer | Ni (5000 ppm) | Same | | | Al clad process | Co-extrusion | Same | | | RRR (Al stabilizer, Cu, over all) | 286, 55, 116 | Same | | | Yield strength (NbTi/Cu @RT) (MPa) | 580 Jungan 20th | | | | Yield strength (Al @4.2 K) (MPa) | 100 | Same | | | Yield strength (over all @4.2 K) (MPa) | 240 | Same | | ## solenoids #### TABLE I SOLENOID PARAMETERS | Magnet Parameters | 2nd solenoid | 1st solenoid | | |---|----------------------|------------------------|--| | Coil nominal diameter (m) | 0.9 | Same | | | Coil Length (m) | 1.4 | Same | | | Coil Thickness (center/notch) (mm) | 3.4 / 3.7 | Same | | | Coil Weight (kg) | 43 | Same | | | Cryostat (outer dimension) (m) | φ 1.06× L3.2 | Same | | | (Inner bore) (m) | φ 0.80 | Same | | | Central magnetic field (T) | 0.8 (~ 1.0) | Same | | | Magnetic uniformity (%) | $\leq \pm 9$ | Same | | | Current (A) | 380 (~ 476) | Same | | | Turns | 2829 | Same | | | Inductance (H) | 3.49 | Same | | | Stored Energy (kJ) | 252 (~395) | Same | | | E/M Ratio in coil (kJ/kg) | 5.9 (~ 9.2) | Same | | | Material @half-wall (g/cm ²) | 2.52 | Same | | | LHe Capacity (t) | 520 | 400 | | | LHe Life Time (day) | 21 | 10 | | | Magnet weight (kg) | 450 | 410 | | | Conductor Parameters | | | | | Type | Al clad NbTi/C | ı monolith | | | Overall size with insulation (mm ²) | 0.9×1.2 | Same | | | NbTi / Cu core diameter (mm) | 0.60 | Same | | | Critical current (A) @2.5T, 4.2 K | > 750 | Same | | | Area ratio (NbTi/Cu/Al) | 1/0.81/3.9 | Same | | | Insulation (µm) | Kapton 2×20 | Same | | | Additive into Al stabilizer | Ni (5000 ppm) | Same | | | Al clad process | Co-extrusion | Same | | | RRR (Al stabilizer, Cu, over all) | 286, 55, 116 | Same | | | Yield strength (NbTi/Cu @RT) (MPa) | 580 Ju | ır san2 0th | | | Yield strength (Al @4.2 K) (MPa) | 100 | Same | | | Yield strength (over all @4.2 K) (MPa) | 240 | Same | | NIAC, S. Westover, MAARSS, 2012 Y. Makida et al., IEEE Transactions on Applied Superconductivity, TASC.2009.2017946 A thin superconducting solenoid for BESS-Polar I (2004, 8.5 days) and II (2009, 25 days ultra-thin). Technological breakthrough. ## magnetic shields to protect astronauts Pumpkin configuration - SR2S project (Battiston 2016) NIAC, E. D'Onghia, Crew-HaT (Halbach torus), 2022 NIAC, S. Westover, MAARSS, 2012 Roberto luppa Advances in Space AstroParticl ## Advances in Space AstroParticle Roberto luppa ## AMS-02 superconducting magnet The AMS-02 detector in the cargo bay of the space shuttle for the flight to ISS 3-D artist view of the AMS-02 magnet system. AMS-02 magnet configuration producing a dipole field B. Blau *et al.*, "The superconducting magnet system of AMS-02 - a particle physics detector to be operated on the International Space Station," in *IEEE Transactions on Applied Superconductivity*, vol. 12, no. 1, pp. 349-352, March 2002, doi: 10.1109/TASC.2002.1018417. # Advances in Space AstroParticle Roberto luppa ## AMS-02 superconducting magnet The AMS-02 detector in the cargo bay of the space shuttle for the flight to ISS 3-D artist view of the AMS-02 magnet system. AMS-02 magnet configuration producing a dipole field B. Blau *et al.*, "The superconducting magnet system of AMS-02 - a particle physics detector to be operated on the International Space Station," in *IEEE Transactions on Applied Superconductivity*, vol. 12, no. 1, pp. 349-352, March 2002, doi: 10.1109/TASC.2002.1018417. "Since the magnet design is optimized with respect to very low heat losses, the magnet is intended to be operated for 3 years without refilling." B. Blau et al., NIMA (2004) 518,139-142, https://doi.org/10.1016/j.nima.2003.10.043. "With Obama administration plans to extend International Space Station operations beyond 2015, the decision was made by AMS management to exchange the AMS-02 superconducting magnet for the non-superconducting magnet" Advances in Space AstroParticle Physics - 2023 June 20th ## "High-temperature" Readapted from https://en.wikipedia.org/wiki/High-temperature_superconductivity, visited on July 10th, 2022 Robustness, efficiency and lifetime of the cooling system are among the most limiting requirements for the use of SC magnets in space. They all depend on the difference T_{env}-T_{op}. #### James Webb hot/cold sides at L2 ## High-Temperature Superconductors Zeitschrift für Naturforschung B, vol. 75, no. 1-2, 2020, pp. 3-14. https://doi.org/10.1515/znb-2019-0103 #### June 20th ## High-Temperature Superconductors Zeitschrift für Naturforschung B, vol. 75, no. 1-2, 2020, pp. 3-14. https://doi.org/10.1515/znb-2019-0103 AMS-02 Nb-Ti/Cu 3000 A/mm2 at 5T at 4.2K (specs from doi:10.1109/TASC.200 2.1018417) ## High-Temperature Superconductors Roberto luppa Advances in Space AstroParticle Physics - 2023 ## High-Temperature Superconductors EuCARD-2 is co-funded by the partners and the European Commission under Capacities 7th Framework Programme, Grant Agreement 312453 WP10 Future Magnets for post-LHC colliders (study, test and design solutions using Bi-2212 and YBCO for HTS dipole magnets) Roberto luppa Advances Physics S pa \bigcirc **AstroParticle** ## HTS Demonstrator Magnet for Space (HDMS) Roberto luppa #### HDMS project goals (Jun. 2018- Feb. 2022) - Conceptual design of a toroidal HTS magnet for a spectrometer in space - Design and manufacture a demonstrator coil for the toroidal magnet - Test and make it ready up to TRL 6 ## HTS Demonstrator Magnet for Space (HDMS) Roberto luppa June 20th #### HDMS project goals (Jun. 2018- Jun. 2022) - Conceptual design of a toroidal HTS magnet for a spectrometer in space - Design and manufacture a demonstrator coil for the toroidal magnet - Test and make it ready up to TRL 6 | OPEN ACCESS OPEN ACCESS | | | | |--|---|--|--| | IOP Publishing Supercond. Sci. Technol. 33 (2020) 044012 (12pp) | Superconductor Science and Technology
https://doi.org/10.1088/1361-6668/ab669b | | | | Conceptual design of a high temperature superconducting magnet for a particle physics experiment in space | | | | | Magnus Dam ¹ ⊚, Roberto Battiston ^{2,3} ⊚, William Jerome Burger ³ ⊚,
Rita Carpentiero ⁴ , Enrico Chesta ¹ ⊚, Roberto luppa ^{2,3} ⊚, Gijs de Rijk ¹ ⊚ and
Lucio Rossi ^{1,5} ⊚ | | | | | CERN, European Organization for Nuclear Research, CH-1211 Geneva 23, Sw Department of Physics, University of Trento, I-38122 Trento TN, Italy TIFPA, Trento Institute for Fundamental Physics and Applications, I-38123 Po ASI, Italian Space Agency, I-00133 Rome RM, Italy On leave from: Department of Physics, University of Milan, I-20133 Milano M | vo TN, Italy | | | | E-mail: magnus.dam@cern.ch Supercond. Sci. | Technol. 33 044012 (2020) | | | ## HTS Demonstrator Magnet for Space (HDMS) Roberto Iuppa #### HDMS project goals (Jun. 2018- Feb. 2022) - Conceptual design of a toroidal HTS magnet for a spectrometer in space - Design and manufacture a demonstrator coil for the toroidal magnet - Test and make it ready up to TRL 6 - Focus of the next part of this presentation - Other useful links: - https://knowledgetransfer.web.cern.ch/aero space/hdms - M. Dam et al., PoS ICRC2021 498 (2021) ### AMaSED: ### Advanced Magnetic Spectrometer Experimental Demonstrator Roberto luppa **—** ## dvances in Space AstroPa June 20th #### **Coil design** - Two pancake coils - Racetrack-like shape - No-insulation coil - Two-tape-stack SuperPower HTS cable (face-to-face) - Tape width: 12 mm - Total HTS tape length: 724 m - Inductance: L = 46.6 mH - Center magnet constant: $\alpha_0 = 1.125 \text{ T/kA}$ - Peak magnet constant: $\alpha_m = 3.75 \text{ T/kA}$ ## STATE STATE OF THE Roberto Iuppa dvances in Space AstroParticle June 20th ## AMaSED full design ## Conductor and cable configuration #### **SuperPower 2G HTS tape** | Description | Value | Unit | |---------------------------------|-------|---------| | Tape width | 12 | mm | | Tape thickness | 97 | μm | | Hastelloy substrate thickness | 50 | μm | | ReBCO thickness | 1.6 | μm | | Silver thickness | 3.8 | μm | | Copper stabilizer thickness | 40 | μm | | $I_{\rm c}$ at 77 K, self-field | 0.4 | kA | #### **Cable configuration** - No-insulation winding technique - Two-tape stack - Dry wound with first and last turns soldered Roberto luppa dvances in Space AstroParticle Physics - 2023 ## Coil assemblies ## NONOIOUS SANISANIA SANISANI SANISAN Roberto luppa Inner and outer copper bands Opening in outer copper band and clamping. Advances in Space AstroParticle Physics - 2023 ### Coil insulation and mechanical structure Roberto luppa - - Single-piece magnet former in Aluminum 2050-T84 - 1.5 mm–3 mm thick G11 fiberglass - Break down voltage greater than 1000 V (largest voltage measured over coil was 0.1 V). ## Magnetic critical current measurements **Figure 3.** Locations of temperature sensor and voltage taps on coil assemblies and interconnection block. **Figure 4.** Measurement for $T_{\rm op} = 40 \, {\rm K}$ where we increased the operating current $I_{\rm op}$ in steps until we approached the magnet critical current $I_{\rm mc}$. Roberto luppa **Figure 5.** The operating current $I_{\rm op}$ as a function of the convergence value of the central magnetic flux density B_0 for $T_{\rm op} = 40 \, \rm K$. ## Coil parameter estimation Supercond. Sci. Technol. 36 (2023) 014007 **Figure 6.** Circuit diagram for the model of a no-insulation coil. | Symbol | Description | | | | |-----------------------|-------------------------------|--|--|--| | $\overline{\alpha_0}$ | Center magnet constant | | | | | $lpha_{ m m}$ | Peak magnet constant | | | | | au | Magnet leftging time constant | | | | | R_r | Radial resistance | | | | | $I_{ m mc}$ | Magnet critical current | | | | | $\max I_{\theta}$ | Maximum achieved I_{θ} | | | | | $\max B_0$ | Maximum achieved B_0 | | | | | $\max B_{\mathrm{m}}$ | Maximum achieved $B_{\rm m}$ | | | | **Figure 7.** Comparison of simulation results with measurement data for $T_{\rm op} = 40\,\rm K$ when the identified parameters are used in the model. No measurement data is available for $B_{\rm m}$. Roberto luppa Advances in Space AstroParticle Physics - 2023 ## Achieved performance for AMaSED-2 Roberto luppa | Symbol | Description | Value at
77 K | Value at
60 K | Value at
40 K | Value at
20 K | Value at
10 K | Unit | |--------------------|-----------------------------|------------------|------------------|------------------|------------------|------------------|-------------| | $lpha_0$ | Center magnet constant | 1.09 | 1.08 | 1.09 | 1.05 | 1.03 | T/kA | | $lpha_{ m m}$ | Peak magnet constant | 3.63 | 3.60 | 3.63 | 3.50 | 3.43 | T/kA | | au | Time constant | 80.4 | 102 | 287 | 785 | 1190 | S | | R_r | Radial resistance | 579 | 458 | 162 | 59.4 | 39.3 | $\mu\Omega$ | | $I_{\rm c}$ | Critical current | 0.226 | 0.537 | 1.22 | 2.32 | 2.94 | kA | | $\max B_0$ | Maximum achieved B_0 | 0.226 | 0.537 | 1.27 | 2.32 | 2.91 | T | | max B _m | Maximum achieved $B_{ m m}$ | 0.755 | 1.79 | 4.22 | 7.73 | 9.71 | Т | # **AstroParticle** Roberto luppa ## Next steps **ASTROTOR project** just funded by Italian ministry for research, targeting: - thermal design of a toroidal magnet for different scenarios (ball. pathfinder/LEO mission /L2 mission) - possibly very high-field beam tests **PRIN** Portale dei bandi PRIN della Direzione Generale della Ricerca del MUR **HDMS – AMASED coil** **CSES – HEPD-02 tracking module** ### Conclusions - Large acceptance and long operation time spectrometers require HTS magnets - The HDMS team constructed and successfully tested an HTS demonstrator magnet for space - AMaSED-2 features important innovations: - No-insulation winding technique - Self-protection against quenches - Copper-bands to transfer current - AMaSED-2 performs better than expected in the range 10-77K - All solutions adopted are space-compliant and immediately scalable - Cooling system design not been addressed by the HDMS team - HDMS delivered the most advanced HTS magnet prototype for space applications, an essential starting point for any future enterprise to detect high-rigidity antimatter in cosmic rays. A STANDIOLOS Roberto luppa Advances in Space AstroParticl Physics - 2023 - Magnus Dam, William Jerome Burger, Rita Carpentiero, Enrico Chesta, Roberto Iuppa, Glyn Kirby, Gijs de Rijk, and Lucio Rossi. Manufacturing and testing of AMaSED-2: a no-insulation high-temperature superconducting demonstrator coil for the space spectrometer ARCOS, Supercond. Sci. Technol. 36, 014007 (2022). - Magnus Dam, William Jerome Burger, Rita Carpentiero, Enrico Chesta, Roberto Iuppa, Gijs de Rijk, and Lucio Rossi. Design and modeling of AMaSED-2: A high temperature superconducting demonstrator coil for the space spectrometer ARCOS, IEEE Trans. Appl. Supercond. 32, 4500105 (2022). - Magnus Dam, William Jerome Burger, Rita Carpentiero, Enrico Chesta, Roberto Iuppa, Gijs de Rijk, and Lucio Rossi. A high temperature superconducting demonstrator coil for ARCOS: a novel toroidal magnetic spectrometer for an astroparticle physics experiment in space, PoS Proc. Sci. 394, 498 (2021). - Magnus Dam, Roberto Battiston, William Jerome Burger, Rita Carpentiero, Enrico Chesta, Roberto Iuppa, Gijs de Rijk, and Lucio Rossi. Conceptual design of a high temperature superconducting magnet for a particle physics experiment in space, Supercond. Sci. Technol. 33, 044012 (2020). co_{urtesy of M. Dam} #### Central magnetic field $$B_0 = \alpha_0 I_{\theta}$$ The center magnet constant α_0 must be determined from measurements. Differentiation yields: $$\dot{B}_0 = \frac{R_r + R_\theta}{L} \left(\alpha_0 \frac{R_r}{R_r + R_\theta} I_{\text{op}} - B_0 \right)$$ In the limit $R_{\theta} \rightarrow 0$ we get the approximation $$\dot{B}_0 = \frac{\alpha_0}{\tau} I_{\rm op} - \frac{1}{\tau} B_0, \qquad \tau = \frac{L}{R_r} \tag{1}$$ Rewrite to vector notation: $$\dot{B}_0 = \begin{bmatrix} I_{\text{op}} & B_0 \end{bmatrix} \begin{bmatrix} \xi_1 \\ \xi_2 \end{bmatrix}, \qquad \xi_1 = \frac{\alpha_0}{\tau}, \quad \xi_2 = -\frac{1}{\tau}$$ (2) Insert the measurement data: $$\begin{bmatrix} \dot{B}_{0}(t_{1}) \\ \dot{B}_{0}(t_{2}) \\ \vdots \\ \dot{B}_{0}(t_{m}) \end{bmatrix} = \begin{bmatrix} I_{\text{op}}(t_{1}) & B_{0}(t_{1}) \\ I_{\text{op}}(t_{2}) & B_{0}(t_{2}) \\ \vdots & \vdots \\ I_{\text{op}}(t_{m}) & B_{0}(t_{m}) \end{bmatrix} \begin{bmatrix} \xi_{1} \\ \xi_{2} \end{bmatrix}$$ (3) This is an regression problem that can be solved for ξ_1 and ξ_2 . courtesy of M. Dam #### SuperPower HTS ReBCO tape: - 12 mm wide, 97 μm thick - Angle dependence: worst case conditions (we conservatively assume *B*-field perpendicular to tape surface) - Field dependence: Robinson Research Institute HTS Wire database, extrapolated to lower temperatures and higher flux densities Physics -2023 AstroParticle 88 Static structural [MPa] Equivalent (von-Mises) Stress $\,$ Deformation Scale Factor: 14