

Status and future prospects of the Limadou HEPD on board the CSES satellite

Advances in Space AstroParticle Physics - ASAPP, 19-23 June 2023

F.M.Follega^{1,2} on behalf of the CSES-Limadou collaboration

- (1) University of Trento
- (2) INFN-TIFPA

The CSES scientific mission

The **CSES mission** is a scientific collaboration between Italy and China.

Scientific goals:

- Investigate the ionosphere and gather world-wide data;
- Measure the particles and plasma perturbations in the ionosphere and magnetosphere: natural sources (EQs) and anthropic emitters;
- Study solar-terrestrial interactions and solar physics: CMEs, SEPs, solar flares;
- Study and extend low energy spectrum of cosmic rays;

The CSES-01 Satellite

CSES-01 was launched on 02/02/2018

- Sun-Synchronous orbit at 500 km;
- Equipped with 9 instruments, among them the **High-Energy Particle Detector (HEPD-01)**
- Payload operation range -65°/65° lat

Category	Payload Name	Observation Targets
Electro-Magnetic Field	Electric Field Detector	Electric Field: DC ~ 3.5MHz
	High Precision Magnetometer	Magnetic Field: DC ∼ 15Hz
	Search Coil Magnetometer	Magnetic Field: 10Hz ~ 20kHz

Energetic Particle	Italian HEPD(INFN Prod.)	Proton: 2MeV~200MeV
	High Energy Particle Package	

CSES-01: is a sophisticated space observatory.

The High Energy Particle Detector HEPD-01

HEPD-01 is designed to measure fluxes of charged particles: electrons (3-100 MeV) and protons (30-200 MeV).

Limadou HEPD-01 integrated on CSES

Acceptances for contained particles Peak ~ 400 cm² sr

LYSO Matrix

Sci. China Technol. Sci. 61, 643-652 (2018)

HEPD-01 event acquisition and reconstruction

Data acquisition performed in several modes/with different trigger masks:

- T → rate studies @ low energies
- T & (P1&P2) → standard DAQ mask

Event acquired also in SAA (saturation effects)

Event reconstruction strategy

Phys. Rev. D 105, 022004

Galactic Cosmic-Ray Hydrogen Spectra

HEPD-01 demonstrated excellent capabilities to measure protons and the possibility to study the solar modulation.

ApJL 945 L39 (2023)

Observation of Space Weather phenomena

Geomagnetic storm of 26/08/2018

- A clear enhancement of HEPD-01 count rate for electrons @ L > 3
- · Other geomagnetic storms under study

SEP/Ground-Level Enhancement (2021)

- 200x flux variation for ~50 MeV proton flux
- Rapid increase for energies up to 250 MeV

Other particle detectors on board CSES-01

The future of the mission with CSES-02

The launch of the second satellite CSES-02 will lead to a new era for the project, **making CSES a sophisticated multi-satellite space observatory:**

- Same platform of CSES-01 with some upgrades
 - · system with orbit manoeuvre capability
 - X-Band Data Transmission 120Mbps →150Mbps
 - Total Mass: 730kg→900kg
 - Peak Power Consumption: ~900W
 - Design Life-span: 5 years→6 years
- Complementary Orbit with CSES-01
 - Same Orbit Plane but shifted by 180°;
 - Return cycle: 5 days→2.5 days
- Operation mode: Full time operational

The Limadou Collaboration committed to build HEPD-02

Operation area between lat [-65,65]

Full coverage at extreme latitudes

Particle detectors on-board CSES-02

MEED-L

In situ measurement of electrons:

- MEED-L: 9 silicon sensors, energy range 25 keV to 400 keV
- MEED-H: 3 sensors, energy range: from 200 keV to 3.2 MeV

Designed to have a small overlap with Limadou HEPD-02

MEED-H

Limadou HEPD-02

Major upgrades with HEPD-02

Major Changes with respect to HEPD-01

- 1. Pixel tracker (MAPS modules)
 - -> 28 um pixel pitch
- 2. Trigger doubled (2 planes):
 - TR1 is 5 bars 0.2 cm thick
 - TR2 is 4 bars 0.8 cm thick (opposite direction w.r.t. TR1)
 - -> Decrease energy threshold and increase redundancy.
- 3. Range calorimeter planes reduced from 16 to 12 (15x15x1 cm³ thick);
- Lyso: from 9 cubes to 6 bars (5x15x2.5 cm³);
 -> Increase energy range, position sensitivity and redundancy.

Major upgrades with HEPD-02

Assembled HEPD-02 FM

HEPD-02 thickness in X/X₀

Limadou HEPD-02 on board CSES-02

HEPD-02 is designed to measure fluxes electrons, protons and heavy nuclei in a wide range of energies and it has sensitivity to Gamma Ray Burst down to the MeV level

For details on MAPS talk by M. Mager talk by T.Kugathasan

First MAPS pixel tracker in space

Based on the MAPS developed for ALICE experiment

Tracker integration steps

Mechanical and thermal models

Modal analysis of tracker mechanics (sustain structural stresses > 10 G)

Thermal analysis of a turret at high temperatures (thermal cycling between -30°C and +50 °C)

Tracker Readout (TDAQ)

Customized ALTAI readout for HEPD-02 space application

- Designed to respect the power **consumption limit of the full tracker**.
- manage tracker configuration and full DAQ and data reduction.
- Implement a hot/cold design to increase overall reliability during flight.

TDAQ implementation

- Xilinx Artix7 in the low-power version.
- Modular structure to implement a sparse readout to achieve high throughput rate.
- MicroBlaze soft processor manage lightweight in-flight calibration procedures.

Fit func: $f(x) = a * Norm(x: x_0, \sigma)$ Pars: a =47788.73, x_0 =8.42, σ =0.67

> 20000 10000

y2/ndof:28.20

HEPD-02 tracker capabilities

HEPD-02 tracking capabilities

- Good correlation between cluster size and deposited energy;
- · Energy resolution limited by multiple scattering at low energies;

Beam energy: 174.1 MeV

Test beam data

10⁴

10³

10²

10¹

Fit func: $f(x) = a *Norm(x; x_0, \sigma)$ Pars: a =47986.55, x_0 =8.43, σ =0.61

15

y2/ndof:16.87

15

10

10

Xs

ρ

· Digital output makes room for online tracking.

15.0

12.5

10.0

7.5 5.0

2.5

20000

Kinetic Energy [MeV]

HEPD-02 LYSO calorimeter

LYSO calorimeter structure:

- Among the largest LYSO crystal ever fabricated 15x5x2.5 cm³;
- Two layers of LYSO bars and a layer contains three bars (read-out by two PMTs each) ~ 4.3 X₀
- Optical features and light propagation properties compatible within 5%.

Gamma Ray Burst with HEPD-02

Dedicated GRB trigger has been designed for HEPD-02, exploiting both EJ-200 plastic scintillators (for low energy gammas) and LYSO crystals (for high energy gammas). **Tests of the GRB ongoing** @ **LINAC** - Trento.

Upgraded trigger capabilities

Depending on the zone along the orbit, different trigger masks can be used at the same time.

- Max 6 concurrent trigger masks;
- 4 trigger masks can be **pre-scaled**;

Galactic + Trapped (AE9/AP9)

Upgraded trigger capabilities

Depending on the zone along the orbit, different trigger masks can be used at the same time.

- Max 6 concurrent trigger masks;
- 4 trigger masks can be **pre-scaled**;

HEPD-02 Test Beam campaign

Carbon/proton @ CNAO Dec 2022 - Jan 2023

e-(>30 MeV) @ BTF April 2023

Prot 228 MeV • 100 120 140 160 x [mm]

Layer = 0

e⁻ (6-12 MeV)/gamma @ (Trento) Last week June 2023

Proton @ APSS (Trento) Last week June 2023

proton band, mode +/- HWHM electron band, mode +/- HWHM Z 4000 E 3000 1000 15000 ADC counts in RAN

Prelimina

Vertical beam e- 120 MeV

HEPD-02 Test Beam campaign

Summary and perspectives

In this talk we reviewed the status of the CSES mission:

- The Limadou HEPD-01 detector and activities;
 - **Solar modulation** of galactic cosmic rays;
 - Observation of impulsive phenomena;
- The Limadou HEPD-02 detector;
 - Design and upgrades with respect of HEPD-01;
 - MAPS tracker and LYSO calorimeter:
 - Improved trigger capabilities;

The new phase of the CSES mission will start with launch of the second satellite, during 2024. An exciting phase will start!

<u>CSES as a new</u> <u>multi-point space observatory</u>

Shipment to Beijing for integration at the end of July

Summary and perspectives

Shipment to Beijing for integration at the end of July

Launch early 2024