

COSI mission status and prospects

John Tomsick (COSI Principal Investigator) UC Berkeley/Space Sciences Laboratory (SSL) June 21, 2023

COSI overview

- ☐ COSI is:
 - □ a Compton telescope for observing *0.2-5 MeV* gamma-rays
 - ☐ a NASA Small Explorer satellite with a planned launch in 2027
- □ Key capabilities
 - ☐ Uses cryogenically-cooled germanium detectors (GeDs) to provide *excellent energy resolution*
 - ☐ Instantaneous field of view is *>25%-sky* and covers the whole sky every day
- ☐ Optimized to make all-Galaxy/all-sky emission line images in the MeV bandpass
- □ Advances our understanding of creation and destruction of matter in our Galaxy

The MeV gap

- □ Previous and current missions have had relatively poor sensitivity in the MeV range
- □ Discovery space where there is known to be interesting physics
 - Nuclear lines for studies of nucleosynthesis
 - ■511 keV e⁻e⁺ annihilation line
 - High levels of polarization
 - Multimessenger astrophysics

Missions/instruments with COSI connections:

- CGRO/COMPTEL (1991-2000): Compton telescope
- INTEGRAL/SPI (2002-now): germanium detectors
- Fermi/LAT (2008-now): all-sky coverage every day
- NuSTAR (2012-now): nuclear line spectroscopy

Why does studying MeV gamma rays call for a Compton telescope?

Macroscopic cross-sections for Germanium

Full photon absorption telescopes (NuSTAR, etc.) COMPTEL,

Pair creation telescopes (Fermi/LAT)

- Germanium detectors from COSI-balloon illustrating Compton telescope operation
 - 12 GeDs, 8x8x1.5 cm³ each

Compton telescope operating principle

- ☐ Multiple interactions in the detector
- $\Box E_{\gamma} = E_1 + E_2 + E_3 + ...$
- ☐ The photon may have come from any point on the "event circle"

☐ Use iterative deconvolution techniques (e.g., maximum likelihood) to produce images

COSI science goals

A. Reveal Galactic element formation

B. Uncover the origin of Galactic positrons

C. Gain insight into extreme environments with polarization

D. Probe the physics of multimessenger events

Goal A: Reveal Galactic element formation

Three windows on element formation associated with massive star evolution:

Isotope	Line energies	Half-life	Phase of evolution
²⁶ A I	1.809 MeV	0.7 Myr	Includes pre- supernovae (SNe)
⁴⁴ Ti	1.157 MeV	59 yr	Recent core collapse SNe
⁶⁰ Fe	1.173 and 1.333 MeV	2.6 Myr	CCSNe over the past millions of years

COMPTEL ²⁶Al map (Oberlack+96)

Goal B: Uncover the origin of Galactic positrons

- □ COSI traces positrons by measuring the 511 keV e⁻e⁺ annihilation line
- ☐ Current questions:
 - What is producing the ~5x10⁴³ e⁺/s required to explain the 511 keV signal?
 - What is the reason for the strong excess coming from the Galactic bulge?

Positron Production Rates (x10⁴² e⁺/s)

Siegert 17 and Siegert 23: "The Positron Puzzle"

Source	Galaxy	Bulge	Disk
²⁶ Al+ ⁴⁴ Ti	5.6±0.3	0.57±0.03	4.9±0.3
Observed	49±15	18.0±0.2	31±15
% explained by ²⁶ Al+ ⁴⁴ Ti	11%±3%	3.2%±0.3%	16%±6%

INTEGRAL/SPI maps of the 511 keV emission

Galactic longitud

Is the 511 keV Galactic bulge excess:

- Truly diffuse?
- Made up of individual sources?
- How many sources or components?

Goal C: Gain insight into extreme environments with polarization

- ☐ Polarization measurements constrain highenergy emission mechanisms and source geometries
 - Imaging X-ray Polarimetry Experiment (IXPE) making great advances in X-rays (2-8 keV)
- ☐ In the MeV band, >50% polarization levels have been measured for:
 - The Crab pulsar (Dean+08; Forot+08)
 - ■Cygnus X-1 (Laurent+11; Jourdain+12)
 - ■Some gamma-ray bursts (e.g., McConnell 17)
- ☐ How does COSI measure polarization?
 - The azimuthal scattering angle is polarizationdependent

COSI-balloon: partially polarized source

Goal D: Probe the physics of multimessenger events

- ☐ Four messengers
 - *Gamma-rays* detected by Fermi and INTEGRAL (and COSI starting in 2027)
 - Gravitational waves detected by LIGO and Virgo facilities
 - Neutrinos detected by the IceCube facility in Antarctica (high-energy) and, e.g., Kamiokande (low-energy)
 - Cosmic-rays detected by particle detectors
- ☐ COSI has connections to all messengers
- ☐ Goal D emphasizes the connection to *gravitational waves*
 - Detects short gamma-ray bursts (GRBs) from merging neutron stars
 - Localizations to ~1° accuracy
 - Public alerts in <1 hour

COSI requirements and measurement goals

A+B
<u>S</u>
qoal
for (
ri≽
ima
Р

Characteristic	Requirement or measurement goal
Sky Coverage	>25%-sky instantaneous FOV100%-sky each day (in survey mode)
Energy Resolution (FWHM)	 6 keV at 511 keV (FWHM/E = 1.2%) 9 keV at 1.157 MeV (⁴⁴Ti) (FWHM/E = 0.8%)
Narrow Line Sensitivity (2 yr, 3σ, point source)	[photons cm ⁻² s ⁻¹]
0.511 MeV 1.8 MeV	
Angular Resolution (FWHM)	• ~2° at 1.8 MeV (²⁶ Al, ~2x better than COMPTEL)

Accreting BH polarization	•	Reaches bright AGN in 2 yr: Cen A, 3C 273, NGC 4151 Reaches several persistent Galactic BHs (plus transients)
GRB polarization	•	≥30 GRBs with polarization measurements (goal in 2 yr)

Short GRB detection, localization, and reporting ≥10 short GRBs (goal in 2 yr)

COSI required line sensitivity compared to actual COMPTEL and INTEGRAL/SPI sensitivities

□ COSI will reach the required sensitivity for every source on the sky

Compton telescope development

- □ NASA Astrophysics Biennial Technology Report 2022
 - ☐ Development of a compact Compton telescope
 - □ NCT/COSI balloon campaigns in 2005, 2009, 2010, 2014, 2016, and 2020

Germanium double-sided strip detectors (GeDs)

- ☐ Semiconductor detectors at cryogenic temperatures
- ☐ Voltages of 1000-1500 V across the two sides
- ☐ 3-dimensional position sensitivity

☐ Uses orthogonal strips to measure x and y

☐ Uses collection time difference (CTD) to measure z

Cryostat, cryocooler, and shields (COSI-balloon)

- ☐ Cryostat
 - Vacuum-sealed with the following connections to the GeDs:
 - cold finger from cryocooler
 - HV feedthroughs
 - Signals from 888 strips
- ☐ Cryocooler
 - Sunpower CryoTel Stirling cycle cooler
 - 11 W lift for 160 W input
 - Largest item in power budget
- ☐ Cesium iodide (CsI) anticoincidence shields
 - 4 cm-thick CsI read out by photomultiplier tubes
 - Germanium events coincident with shield events are vetoed
 - Largest item in mass budget

COSI-balloon summary

- □ Results from 46-day flight in 2016
 - GRB 160530A (Lowell 17, Sleator 19)
 - 511 keV (Kierans 18+20, Siegert+20)
 - ²⁶Al (Beechert+22, ApJ)
 - Crab nebula (Zoglauer+21)
- □ Capabilities demonstrated
 - Real-time GRB reporting
 - Imaging
 - Spectroscopy
 - Polarization measurement capabilities
- □ Proof of concept demonstrated with COSI-balloon
 - Instrument operation
 - Data analysis with MEGAlib (Zoglauer 06) and COSIpy (Siegert+20)

GRB 160530A: Reported in real-time in GCN 19473 (Tomsick+16)

511 keV from the Galactic bulge

²⁶Al from the Galactic plane

COSI advances vs. COSI-balloon

- ☐ Change from 12 to 16 GeDs
- ☐ Change from 37 to 64 strips per GeD side (2048 signals)
 - Better angular resolution
 - Better event reconstruction → A_{eff}
- ☐ Change from CsI to BGO material for active shields
- ☐ Longer exposure
 - COSI has a 2-year baseline mission
- No atmospheric attenuation
- ☐ Lower and more stable background
- ☐ All-sky coverage

64 strip GeD loaded into test cryostat

COSI orbit and observing modes

- ☐ Low-Earth equatorial orbit to minimize background
 - Targeting
 - 0° orbital inclination
 - 550 km altitude (trade-off between background and orbit lifetime)

- ☐ Survey mode
 - North-South repointing (±22°) every 12 hours to cover the whole sky every day
- ☐ Constant Zenith Angle (CZA) mode
 - CZA mode will be used to maximize coverage of interesting events
 - Plan to respond to targets of opportunity (TOOs) with CZA mode

Mechanical overview

Mass Table				
COSI Payload Current Best Estimate (CBE)	188 kg			
COSI total CBE	292 kg			
Mass allocation	365 kg			

• Size of hexagonal PIP is ~1m flat-to-flat

Ground communications and data link

- ☐ Ground stations to accommodate 6.3 Gbits/day (59 kbps science data)
 - Primary: Malindi ground station
 - Secondary: Singapore ground station
- ☐ MOC and SOC at UC Berkeley
- ☐ Plan for transient alerts
 - Detection in BGO shields
 - Expect approximately one trigger per day (long and short GRBs, SGRs, TGFs, etc.)
 - Buffered germanium data selected and sent down via Tracking and Data Relay Satellite (TDRS)
 - Automatic ground processing for classifying events, determining positions, and sending GCN notifications

The COSI collaboration

University of California

- John Tomsick (Principal Investigator, UCB)
- Steven Boggs (Deputy PI, UCSD)
- Andreas Zoglauer (Project Scientist, UCB)

Naval Research Laboratory

Eric Wulf (Electronics and shield lead)

Goddard Space Flight Center

- Albert Shih (CHRS lead)
- Carolyn Kierans (Data pipeline co-lead)
- Alan Smale (HEASARC/archiving lead)

Northrop Grumman

Institutions of Co-Investigators and Collaborators

- Clemson University
- Los Alamos National Laboratory
- Louisiana State University
- **INAF and ASI, Italy**

Elisabetta Cavazzuti, Luigi Costamante

- JMU/Wurzburg and JGU/Mainz, Germany
- IRAP, France
- Science team members at National Tsing Hua University, University of Hertfordshire, North-West University (South Africa), and Yale University

Current status and schedule

☐ 64-strip GeD delivered to UC Berkeley

- Naval Research Lab
 - Detector Interface Board with two 32-channel ASICs (left)
 - BGO scintillators with SiPM readout (right)

■ NASA/GSFC

- Cryostat heat removal system
- Cryocooler procurement

Activity	2022	2023	2024	2025	2026	2027	2028
	ASOND	J F M A M J J A S O N D	J F M A M J J A S O N D	J F M A M J J A S O N D	J F M A M J J A S O N D	J F M A M J J A S O N D	J F M A M J J A S O N D
Key-Decision Points			3/25 介 KDP-C		10/5 🏠 KDP- 10/16	D 1 KDP-E 10/1	
Mission Milestones	1/17	介 SRR 2/	26 介 PDR 12/3 介	CDR	9/4 	PSR 14/30 LRD 11 PLAR	
COSI Instrument Milestones		2/	9 介 IPDR 11/8 介 IC	DR	SIRPER	3/24 8/27	

Currently in Phase B and passed Systems Requirements Review (SRR) PDR in February 2024 CDR in December 2024

Payload I&T System
Integration
Review in
Sept 2026

Launch!

2-year prime mission

Path forward and conclusion

- ☐ Exciting prospects for COSI's study of the MeV bandpass starting in 2027
 - Nuclear lines, positron annihilation, polarization, MMA
- ☐ COSI-balloon has allowed for instrument development and has provided an important proof of concept
- ☐ For COSI, next milestone review is Preliminary Design Review (PDR) planned for Feb 2024
- ☐ Yearly data challenges are an opportunity for community involvement and DC1 has been released
 - https://github.com/cositools/cosi-data-challenge-1

cosi.ssl.berkeley.edu

Backup

Current instrument design

COSI AGN Science: Polarization

☐ Polarization measurements provide unique diagnostics for determining emission mechanisms and source geometries (e.g., magnetic field, accretion disk, and jet)

- ☐ AGN like Cen-A, 3C 279, 3C 454.3, etc. bright enough to be detected in steady state
- ☐ Several other flaring blazars will also be detected on the 1-2 week timescale

Cosmic ray de-excitation lines

- ☐ Galactic center region (below) and Cas A (right) are considered as possibilities for detection of gamma-ray lines
 - ☐ Would constrain LECR spectrum (~10 MeV to 1 GeV)

Predicted spectrum for the Cas A SNR from Summa+11

Galactic Diffuse Continuum Emission

- ☐ Most recent recentCOSI-balloon dataanalysis has beencompared to INTEGRAL
- ☐ Karwin et al., in prep.

COSI observational summary

Transient science

- ☐ GRB alerts ☐ Blazars
- ☐ GRB polarization ☐ Classical novae
- □ Correlation with HE □ Type Ia SNe neutrinos
- Black hole transients

Expected persistent source types

- ☐ AGN (e.g., Cen A)
- ☐ X-ray binaries (e.g., Cyg X-1)
- Pulsars
- ☐ Gamma-ray binaries

Emission line science

COSI comparisons:

- Obtains 46-day balloon 511 keV sensitivity in ~1 day
- Energy resolution is >20x better than COMPTEL
- FOV is 4x larger than COMPTEL and 12x larger than INTEGRAL

511 keV Galactic substructure

Candidate Positron Sources

Type of Source	Source	
Nucleosynthesis products	²⁶ Al from stellar winds	
	²⁶ Al & ⁴⁴ Ti from CCSNe	
	⁵⁶ Ni/ ⁵⁶ Co from Type Ia SNe	
	¹³ N, ¹⁸ F, ²² Na from novae	
	Low-mass X-ray binaries	
	Microquasars	
	Sgr A*	
Individual sources	Active stars	
	Pulsar winds	
	Gamma-ray bursts	
	Neutron star mergers	
	Annihilating MeV DM	
Dark matter	Decaying heavy DM	
	Primordial black holes	

- ☐ 511 keV imaging of the Galaxy with COSI
 - Compare to observed distributions
 - Compare to theoretical distributions
 - Look for individual sources

Contributions

are

highly uncertain

COSI 2016 Wanaka Flight

46 days later, COSI landed in Peru, completing the longest mid-latitude flight for a large balloon

COSI detects and images the Crab nebula

COSI detects and images 511 keV emission from Galactic e-e+ annihilation

COSI detects 1.809 MeV emission from Galactic ²⁶Al

May 30, 2016: First balloon to report a GRB detection and localization with Gamma-ray Coordination Network (GCN): GRB160530A

May 17, 2016: COSI launch from Wanaka, New Zealand

COSI detector support structure

- □ The COSI detector support structure was prototyped and tested during phase A
- A vibration test was carried out at SSL during Jan/Feb2021
- Support structure design validated

COSI and **SNI**a

The bolometric (dominated by optical) luminosity is powered by ⁵⁶Ni and ⁵⁶Co

Expect ~two SNIa per year within 20 Mpc

COSI's 3σ sensitivity at 847 keV (at requirement levels):

 10⁻⁵ ph/cm²/s in 100 days in survey mode

Distance	Predicted flux (median of models)
3.5 Mpc	3.0x10 ⁻⁴ ph/cm ² /s
10 Mpc	4.0x10 ⁻⁵ ph/cm ² /s
20 Mpc	1.0x10 ⁻⁵ ph/cm ² /s

Classical novae, magnetars, Galactic SNe

☐ Classical novae

- Predicted (Hernanz+05) 511 keV line and gamma-ray continuum have not been seen because the explosion and gamma-ray emission occur several days before the optical nova
 - COSI's all-sky-every-day coverage is the right strategy
 - ~1 event per year <2 kpc
- Magnetars
- ☐ Galactic CCSNe
 - Nuclear lines from more than ten different radioactive nuclei in the SN ejecta to probe asymmetries in the SN engine and details of the burning layers in the progenitor star
 - Shock breakout (Margutti+12)
 - Collision with binary (Kasen+10)

- 4U 0142+61 is one of nine magnetars detected at >20 keV in quiescence
- COSI will be capable of measuring outburst emission and bursts