# THE ENHANCED X-RAY TIMING AND POLARIMETRY (EXTP) MISSION

MARCO FEROCI

IAPS/INAF & INFN/RM2, ROME, ITALY

ON BEHALF OF THE EXTP CONSORTIUM





- ☐ A flagship X-ray observatory mission, being developed by the Chinese Academy of Sciences, with a large contribution by a European Consortium. ESA is considering a MoO participation.
- ☐ Currently in its Phase B2 study (I-SRR successfully completed). The launch date is planned in 2029, for a minimum mission lifetime of 5 years (goal 8 years).
- □ eXTP is proposed as an observatory open to the worldwide scientific community, with an observing plan based on Core Program observations as well as on a Guest Investigator Program.



# **eXTP PI Institute:** IHEP/CAS, Beijing

**CAS** 



**CNSA** 



**IHEP Beijing** 



**Institute of High Energy Physics** Chinese Academy of Sciences

**Tsinghua University** 



**Tongji University** 



**CAST Beijing** 



中国空间技术研究院

IAMC Shanghai



Harbin Institute of Technology



## Italy









Spain





Germany







France



**Switzerland** 



Czech Republic



**Poland** 





Denmark



The Netherlands





**Austria** 



Turkey





Study of matter under extreme conditions of gravity, density and magnetism. For the first time: simultaneous, high-throughput spectral, timing and polarimetry observations.

- Constrain the Equation of state of the supra-nuclear density matter in the interior of neutron stars.
- Accretion physics in the strong-field regime of gravity and tests of General Relativity in neutron stars and black holes over the mass scale.
- Physics of light and matter in the presence of ultrastrong magnetic fields in magnetars and X-ray pulsars.
- Multi-purpose observatory and wide-field monitoring for transients (and e.m. counterparts of GWs). Rapid automated follow-up.











SCIENCE CHINA

e X-ray Timing and Polarimetry ontier with eXTP

Physics, Mechanics

& Astronomy Yolume 62 - Number 2 February 2019









Dense matter with eXTP

Anna L. Watts1\*, WenFei Yu2, Juri Poutanen3.4, Shu Zhang5, Sudip Bhattacharyya6,

Slavko Bogdanov<sup>7</sup>, Long Ji<sup>8</sup>, Alessandro Patruno<sup>9</sup>, Thomas E. Riley<sup>1</sup>, Pavel Bakala<sup>10</sup>, Altan Baykal<sup>11</sup>,

Federico Bernardini 12,13, Ignazio Bombaci 14,15, Edward Brown 16, Yuri Cavecchi 17,18,

Deepto Chakrabarty<sup>19</sup>, Jérôme Chenevez<sup>20</sup>, Nathalie Degenaar<sup>1</sup>, Melania Del Santo<sup>21</sup>,

Tiziana Di Salvo<sup>22</sup>, Victor Doroshenko<sup>8</sup>, Maurizio Falanga<sup>23</sup>, Robert D. Ferdman<sup>24</sup>, Marco Feroci<sup>25</sup>,

Angelo F. Gambino<sup>22</sup>, Ming Yu Ge<sup>5</sup>, Svenja K. Greif<sup>26,27</sup>, Sebastien Guillot<sup>28</sup>, Can Gungor<sup>5</sup>.

Dieter H. Hartmann<sup>29</sup>, Kai Hebeler<sup>26,27</sup>, Alexander Heger<sup>30</sup>, Jeroen Homan<sup>19</sup>, Rosario Iaria<sup>22</sup>,

Physics, Mechanics & Astronomy

SCIENCE CHINA

Special Issue: The X-ray Timing and Polarimetry Frontier with eXTP

Special Issue: The X-ray Timing and Polarimetry Frontier with eXTP



https://doi.org/10.1007/s11433-017-9188-4

February 2019 Vol. 62 No. 2: 029500

Special Issue: The X-ray Timing and Polarimetry Frontier with eXTP

Physics, Mechanics & Astronomy



Invited Review

Special Issue: The X-ray Timing and Polarimetry Frontier with eXTP

#### Accretion in strong field gravity with eXTP

Alessandra De Rosa1\*, Phil Uttley2, LiJun Gou3, Yuan Liu4, Cosimo Bambi5, Didier Barret<sup>6</sup>, Tomaso Belloni<sup>7</sup>, Emanuele Berti<sup>8</sup>, Stefano Bianchi<sup>9</sup>, Ilaria Cajazzo<sup>10</sup>, Piergiorgio Casella<sup>11</sup>, Marco Feroci<sup>1,12</sup>, Valeria Ferrari<sup>13</sup>, Leonardo Gualtieri<sup>13</sup>, Jeremy Heyl<sup>10</sup>, Adam Ingram<sup>14</sup>, Vladimir Karas<sup>15</sup>, FangJun Lu<sup>4</sup>, Bin Luo<sup>16</sup>, Giorgio Matt<sup>9</sup>, Sara Motta<sup>14</sup>, Joseph Neilsen<sup>17</sup>, Paolo Pani<sup>13</sup>, Andrea Santangelo<sup>4,68</sup>, XinWen Shu<sup>18</sup>, JunFeng Wang<sup>19</sup>, Jian-Min Wang<sup>20</sup>, YongQuan Xue<sup>20</sup>, YuPeng Xu<sup>4</sup>, WeiMin Yuan3, YeFei Yuan20, Shuang-Nan Zhang4, Shu Zhang4, Ivan Agudo21, Lorenzo Amati<sup>22</sup>, Nils Andersson<sup>23</sup>, Cristina Baglio<sup>24</sup>, Pavel Bakala<sup>25</sup>, Altan Baykal<sup>26</sup>,

#### SCIENCE CHINA

#### Physics, Mechanics & Astronomy



· Invited Review ·

February 2019, Vol. 62, No. 2: 029505

SCIENCE CHINA

Special Issue: The X-ray Timing and Polarimetry Frontier with eXTP

## Jean J. M. in 't Zand1", Enrico Bozzo2, JinLu Qu3, Xiang-Dong Li4, Lorenzo Amati5, Yang Chen4,

· Invited Review ·

Immacolata Donnarumma<sup>6,7</sup>, Victor Doroshenko<sup>8</sup>, Stephen A. Drake<sup>9</sup>, Margarita Hernanz<sup>10</sup>, Peter A. Jenke<sup>11</sup>, Thomas J. Maccarone<sup>12</sup>, Simin Mahmoodifar<sup>9</sup>, Domitilla de Martino<sup>13</sup>, Alessandra De Rosa<sup>7</sup>, Elena M. Rossi<sup>14</sup>, Antonia Rowlinson<sup>15,16</sup>, Gloria Sala<sup>17</sup>, Giulia Stratta<sup>18</sup>, Thomas M. Tauris<sup>19</sup>, Joern Wilms<sup>20</sup>, XueFeng Wu<sup>21</sup>, Ping Zhou<sup>15,4</sup>, Iván Agudo<sup>22</sup>, Diego Altamirano<sup>23</sup>, Jean-Luc Atteia24, Nils A. Andersson25, M. Cristina Baglio26, David R. Ballantyne27, Altan Baykal28,

#### Observatory science with eXTP

· Invited Review ·

#### Physics and astrophysics of strong magnetic field systems with eXTP

Andrea Santangelo<sup>1,2\*</sup>, Silvia Zane<sup>3\*</sup>, Hua Feng<sup>4\*</sup>, RenXin Xu<sup>5\*</sup>, Victor Doroshenko<sup>1\*</sup>, Enrico Bozzo<sup>6</sup>, Ilaria Caiazzo9, Francesco Coti Zelati7,17,20, Paolo Esposito17, Denis González-Caniulef3, Jeremy Hey19, Daniela Huppenkothen<sup>10</sup>, Gianluca Israel<sup>11</sup>, ZhaoSheng Li<sup>12</sup>, Lin Lin<sup>13</sup>, Roberto Mignani<sup>8,15</sup>, Nanda Rea16,17, Mauro Orlandini14, Roberto Taverna18, Hao Tong19, Roberto Turolla3,18, Cristina Baglio<sup>25</sup>, Federico Bernardini<sup>25</sup>, Niccolo' Bucciantini<sup>27</sup>, Marco Feroci<sup>29,30</sup>, Felix Fürst<sup>31</sup> Ersin Göğüs<sup>32</sup>, Can Güngör<sup>2</sup>, Long Ji<sup>1</sup>, FangJun Lu<sup>2</sup>, Antonios Manousakis<sup>22,23</sup>, Sandro Mereghetti<sup>8</sup>, Romana Mikusincova21, Biswajit Paul24, Chanda Prescod-Weinstein33, George Younes26, Andrea Tiengo28, YuPeng Xu2, Anna Watts17, Shu Zhang2, and Shuang-Nan Zhan2

# 2019 White Papers for eXTP science case and mission:

- Dense Matter
- **Strong Field Gravity**
- Strong Magnetism
- **Observatory Science**
- Instrument and mission

SCIENCE CHINA Physics, Mechanics & Astronomy

February 2019 Vol. 62 No. 2: 029502

#### The enhanced X-ray Timing and Polarimetry mission—eXTP

ShuangNan Zhang<sup>1\*</sup>, Andrea Santangelo<sup>1,2\*</sup>, Marco Feroci<sup>3,4\*</sup>, YuPeng Xu<sup>1\*</sup>, FangJun Lu<sup>1</sup>, Yong Chen<sup>1</sup>, Hua Feng<sup>5</sup>, Shu Zhang<sup>1</sup>, Søren Brandt<sup>36</sup>, Margarita Hernanz<sup>12,13</sup>, Luca Baldini<sup>33</sup>. Enrico Bozzo<sup>6</sup>, Riccardo Campana<sup>23</sup>, Alessandra De Rosa<sup>3</sup>, YongWei Dong<sup>1</sup>, Yuri Evangelista<sup>3,4</sup>, Vladimir Karas<sup>8</sup>, Norbert Meidinger<sup>16</sup>, Aline Meuris<sup>10</sup>, Kirpal Nandra<sup>16</sup>, Teng Pan<sup>21</sup>, Giovanni Pareschi<sup>31</sup>, Piotr Orleanski<sup>37</sup>, QiuShi Huang<sup>22</sup>, Stephane Schanne<sup>10</sup>, Giorgia Sironi<sup>31</sup>, Daniele Spiga<sup>31</sup>, Jiri Svoboda<sup>8</sup>, Gianpiero Tagliaferri<sup>31</sup>, Christoph Tenzer<sup>2</sup>, Andrea Vacchi<sup>25,26</sup>, Silvia Zane<sup>14</sup>, Dave Walton14, ZhanShan Wang22, Berend Winter14, Xin Wu7, Jean J. M. in 't Zand11, Mahdi Ahangarianabhari<sup>29</sup>, Giovanni Ambrosi<sup>32</sup>, Filippo Ambrosino<sup>3</sup>, Marco Barbera<sup>35</sup>, Stefano Basso<sup>31</sup>, Jörg Bayer<sup>2</sup>, Ronaldo Bellazzini<sup>33</sup>, Pierluigi Bellutti<sup>28</sup>, Bruna Bertucci<sup>32</sup>, Giuseppe Bertuccio<sup>29</sup>, Giacomo Borghi<sup>28</sup>, XueLei Cao<sup>1</sup>, Franck Cadoux<sup>7</sup>, Riccardo Campana<sup>23</sup>, Francesco Ceraudo<sup>3</sup>. TianXiang Chen1, YuPeng Chen1, Jerome Chevenez36, Marta Civitani31, Wei Cui25, WeiWei Cui1, Thomas Dauser<sup>39</sup>, Ettore Del Monte<sup>3,4</sup>, Sergio Di Cosimo<sup>1</sup>, Sebastian Diebold<sup>2</sup>, Victor Doroshenko<sup>2</sup>.

An update activity has started, including multi-messenger astronomy.



# Payload concept

- ➤ Multiple short focal-length modules for large telescope area
- ➤ Multiple modules for large-area collimated modules
- Polarimeter with imaging capability
- ➤ Wide field monitor











- Large collecting area achieved by multiple optics with short focal length. Baseline: 9 optics with 5.25m FL
- ❖ Total effective area: >0.7 m² @1 keV, 0.5 m² @6 keV
- Non-imaging, PSF requirement 1 arcmin HPD, 12' FoV
- Multi-pixel SDD detector (to enable background subtraction). Single photon, <100μs</p>
- Energy band: 0.5-10 keV
- Energy resolution: <180 eV FWHM @6 keV</p>











Imaging, PSF 20 arcsec HPD

Total effective area: 900 cm<sup>2</sup> @2 keV (includes QE)

Gas Pixel Detector: single photon, <100µs

Energy band: 2-10 keV

Energy resolution: 20% FWHM @6 keV



Tsinghua Univ., INFN-Pi











❖ Total effective area: 3.0 m² @8 keV

Energy band: 2-30 keV

Energy resolution: <240 eV FWHM @6 keV</p>

- ❖ Based on the LOFT/LAD design
- ❖ 40 Modules on support truss
- 1° Collimated, large-area SDD detector.
   Single photon, <10μs</li>



















- Field of View: 4 steradian (at 20% response)
- Imaging, <5 arcmin angular resolution, 1 arcmin PSLA
- Energy band: 2-50 keV
- Energy resolution: 300 eV FWHM @6 keV
- Effective area: 80 cm<sup>2</sup> @6 keV (1 unit, on axis)
- Same design as LOFT/WFM, 3 units (6 cameras)
- Same detectors as LAD (SDD). Single photon, <10μs























NIEL from 11 MeV and 50 MeV protons:

PSI - Zurich

[E. Del Monte et al. 2014, JINST 9]

NIEL from soft protons (800 keV p+):

Tubingen

[E. Del Monte et al. 2014, SPIE 9144]



Variation of the CCE (11 MeV p+): PSI – Zurich [Del Monte et al. 2015, JINST 10]



Hypervelocity impacts from debris (0.5-3 mm diameter):

MPIK - Heidelberg
[G. Zampa et al. 2014, JINST 9]



Total Dose (Co<sup>60</sup> photons, 85 krad): Calliope – Casaccia (Rome) [F. Ceraudo et al., in preparation]

#### Effective Area of SFA and LAD



### Instantaneous FoV of WFM



**❖ LAD**: 6x RXTE/PCA, 35x XMM-Newton (but collimated!) + hard-X response

SFA: 8x XMM-Newton and 0.3-2x Athena/WFI (but multiple optics and larger PSF!). Limiting sensitivity  $\sim 10^{-14}$ - $10^{-15}$  erg cm<sup>-2</sup> s<sup>-1</sup>

PFA: 7x IXPE. Sensitivity: 1% MDP in 50ks for a 100 mCrab source

❖ WFM: Largest FoV ever, first time with 300 eV resolution. 3 mCrab in 50ks





|               | Payload | Parameter             | Specification                                              |
|---------------|---------|-----------------------|------------------------------------------------------------|
| soft Response | SFA     | Energy range          | 0.5-10 keV                                                 |
|               |         | Effective area        | >7000 cm <sup>2</sup> @1 keV, >5000 cm <sup>2</sup> @6 keV |
|               |         | Energy resolution     | <180 eV FWHM @6 keV                                        |
|               |         | FoV/HPD               | 12 arcmin / 1 arcmin                                       |
|               |         | Focal plane detector  | Pixelated SDD (19 pixels)                                  |
| raige area    | LAD     | Energy range          | 2-30 keV (extended: 30-80 keV for out-FoV)                 |
|               |         | Effective area        | 30000 cm <sup>2</sup>                                      |
|               |         | Energy resolution     | <240 eV FWHM @6 keV                                        |
|               |         | FoV                   | 1° (FWHM)                                                  |
|               |         | Detector              | Large area SDD (640 units, 40 Modules)                     |
| Polarization  | PFA     | Energy range          | 2-10 keV                                                   |
|               |         | Effective area        | >900 cm <sup>2</sup> @2 keV (including QE)                 |
|               |         | Energy resolution     | 1.2 keV FWHM @6 keV                                        |
|               |         | FoV/HPD               | 12 arcmin / 20 arcsec                                      |
|               |         | Focal plane detector  | GPD (4 units)                                              |
| Monitoring    | WFM     | Energy range          | 2-50 keV                                                   |
|               |         | Energy resolution     | 300 eV FWHM @6keV                                          |
|               |         | FoV                   | >4 sr (at 20% of peak response)                            |
|               |         | Angular resolution    | <5 arcmin                                                  |
|               |         | Localization accuracy | <1 arcmin                                                  |
|               |         | Detector              | Large area SDD                                             |



# ☐ Sky visibility

- >50% of the sky accessible by the narrow field instruments at any time (requirement) – current baseline: ~65% (-60°/+30°)
- 4 of the sky instantaneously monitored by the WFM at any time

## □ Transient events

- Onboard triggering and transient localization capability (WFM)
- Autonomous slewing (>3°/min minimum speed)
- Transmission of coordinates to the ground: Bei Dou (<30s seconds delay)</li>

# ☐ Targets of Opportunity

- Large allocation to ToO observations
- Fast uplink of ToO coordinates (Bei Dou)
- <12 hours execution time (requirement)</p>



| Parameter        | Value                                |  |
|------------------|--------------------------------------|--|
| Orbit            | 550 km, <2.5° inclination            |  |
| Launcher         | Long-March CZ-5, from Wenchang       |  |
| Mass             | 4500 kg                              |  |
| Power            | 3.6 kW                               |  |
| Telemetry        | 1.7 Tb/day (X-band)                  |  |
| Ground Stations  | Colombo, Malindi, +                  |  |
| Pointing         | 3-axis stabilized, < 0.01° (3-sigma) |  |
| Sky visibility   | 50% (goal 75%)                       |  |
| Mission Duration | 5 years (goal 8 years)               |  |
| Launch date      | 2029                                 |  |





GRB detection sensitivity in terms of peak flux sensitivity as a function of the spectral peak energy  $E_p$  [359] of the WFM (red) for M4 configuration compared to those of CGRO BATSE (green), Swift BAT (blue), Fermi GBM (brown), and SVOM ECLAIRs (cyan).









# eXTP/WFM



GRB prompt emission, 8s integration, Fe absorption edge at z=0.86







Afterglow: 12 hours after GRB onset, 50 ks, average flux 8x10<sup>-13</sup> erg cm<sup>-2</sup> s<sup>-1</sup>





eXTP is conceived as a powerful and general observatory for compact Galactic and bright extragalactic objects to date. It will offer for the first time the most complete diagnostics of compact sources: excellent spectral, timing and polarimetry sensitivity on a single payload.

# **Five international Science Working Groups**

- Accretion in Strong Field Gravity
- Dense Matter
- Strong Magnetism
- Observatory Science
- Multi-messenger astronomy

The eXTP Team is open to contributions from the wide scientific community.

More info at: <a href="http://www.isdc.unige.ch/extp/">http://www.isdc.unige.ch/extp/</a>

