

X-ray Polarimetry with Machine Learning:

A Hybrid Approach for Tracks Reconstruction in Gas Pixel Detectors

Nicolò Cibrario on behalf of the team Università degli Studi di Torino nicolo.cibrario@unito.it

Gas Pixel Detector

Detector onboard of the Imaging X-ray Polarimetry Explorer (IXPE)

Tested on CubeSat PolarLight and will be on board of the enhanced X-ray Timing and Polarimetry mission (eXTP)

GPD energy range: 2-8 keV

Photo-electron tracks produced by _ 3keV and 7keV energy photons

From tracks to polarization

$$\frac{d\sigma_c^k}{d\Omega} \propto Z^5 E^{-\frac{7}{2}} \frac{\sin^2\theta \cos^2\phi}{(1+\beta\cos\theta)^4}$$

From tracks to polarization

$$\frac{d\sigma_c^k}{d\Omega} \propto Z^5 E^{-\frac{7}{2}} \frac{\sin^2\theta \cos^2\phi}{(1+\beta\cos\theta)^4}$$

Track reconstruction

Algorithm developed by IXPE collaboration: **Moment Analysis**Analytic reconstruction of the track parameters

Examples

The reconstruction of the emission angle $\boldsymbol{\varphi}$ depends on the quality of the impact point reconstruction

Imperfect reconstruction: 1st implication

Modulation factor: reconstructed polarization fraction for a 100% polarized beam

Imperfect reconstruction: 2nd implication

Polarization Leakage: systematic caused by the incorrect impact point reconstruction

Convolutional Neural Networks (CNN)

Developing of Machine Learning algorithm trained to reconstruct the emission angle starting from the track images

Kitaguchi et al. 2019 https://arxiv.org/abs/1907.06442 Moriakov et al. 2020 https://arxiv.org/abs/2005.08126

Peirson et al. 2021 https://arxiv.org/abs/2007.03828

Main challenges

It's difficult to handle the hexagonal structure of the pixels Potential introduction of additional systematics compared to the standard moment analysis

Hybrid algorithm: joining CNN and moment analysis

We developed a network specifically for the impact point reconstruction

The CNN-predicted impact point replaces the one predicted by the standard moment analysis

Image sharpening

Artificial sharpening of the images. The hexagonal symmetry is preserved.

Impact point: results

Polarization: results

Marginal improvement of the modulation factor (1% at 3keV; 6% at 6 keV) Significant reduction of the polarization leakage (~ factor 2)

Summary

We developed a hybrid algorithm for polarization measurements with GPDs

We introduced a fast algorithm for the **hexagonal convolution** and an **artificial sharpening** of the images

We improved the reconstruction of the impact point position

We marginally improved the modulation factor and significantly reduced the polarization leakage effect

A&A 674, A107 (2023) https://doi.org/10.1051/0004-6361/202346302 © The Authors 2023

Joint machine learning and analytic track reconstruction for X-ray polarimetry with gas pixel detectors

N. Cibrario^{1,2}, M. Negro^{3,4,5}, N. Moriakov⁶, R. Bonino^{1,2}, L. Baldini^{7,8}, N. Di Lalla⁹, L. Latronico¹, S. Maldera¹, A. Manfreda^{7,10}, N. Omodei⁹, C. Sgró⁷ and S. Tugliani^{1,2}

On going...

We are validating the algorithm with real lab data, and we are calibrating a dedicated facility in Torino.

Backup slides

Moment Analysis

1.Determination of the barycenter and of the second moment of the distribution of charge

$$\begin{split} x_b &= \frac{\sum_i q_i x_i}{\sum_i q_i} \quad y_b = \frac{\sum_i q_i y_i}{\sum_i q_i} \\ M_2(\phi) &= \frac{\sum_i q_i [(x_i - x_b) cos(\phi) + (y_i - y_b) sin(\phi)]^2}{\sum_i q_i} \end{split}$$

2. Determination of the third moment of distribution of charge to select the initial part of the track

$$M_3(\phi) = \frac{\sum_{i} q_i [(x_i - x_b) cos(\phi) + (y_i - y_b) sin(\phi)]^3}{\sum_{i} q_i}$$

3. Calculation of the weights respect to the initial part of the track, and subsequent determination of the impact point

$$\begin{split} w_i &= e^{-\frac{d_{b,i}}{d_s}} \\ x_{IP} &= \frac{\sum_i w_i x_i}{\sum_i w_i} \quad y_{IP} = \frac{\sum_i w_i y_i}{\sum_i w_i} \end{split}$$

4. Re-determination of the second moment of charge distribution, this time respect to the predicted impact point*

$$M_2'(\phi) = \frac{\sum_{i} w_i [(x_i - x_{IP}) \cos(\phi) + (y_i - y_{IP}) \sin(\phi)]^2}{\sum_{i} w_i}$$

* In Hybrid algorithm, we use the CNN-predicted one!

Image sharpening

CNN hyper-parameters

Number of epochs: 60

Introduction of OHEM process from 30th epoch

Images size: 72x72 Pixels

Adam optimizer, with decreasing Ir

Loss function:

$$L(x_{true}, y_{true} | x_{pred}, y_{pred}) = |(x_{true}, y_{true}) - (x_{pred}, y_{pred})|$$

Hexagonal Convolution

Radial Modulation

We align the reference axis to the radial direction: this allows to determine a potential radial polarization in the source

