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Particle tracking in space experiments for Cosmic Rays

▶ Discrimination of charged particles
→ Magnetic spectrometers

▶ Tracking planes based on Silicon
µ-strip detectors

▶ Magnetic field used to bend the
trajectory
→ reconstruct momentum and
particle charge

▶ γ-rays measurements

▶ High-density material is used for
pair production

▶ Tracking planes are inserted
between the conversion foils

▶ Tracking planes based on Silicon
µ-strip detectors
→ reconstruct the vertex of the
incoming photon and its direction.

Future missions → HERD, ALADINO, AMS-100

Objective → probe higher energy cosmic rays, improved sensitivity
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Time resolving tracking in space experiments

▶ Identification of back-scattered hits
from calorimeters

▶ Ghost hits in “Si-MicroStrip”
detectors

▶ Time-of-flight (ToF) measurement

▶ Improved e/p identification
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▶ d and anti-d

▶ 3He/4He

Matteo Duranti et al. Instruments 5.2 (2021)
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4D tracking

4D tracking is referred to assigning a space and a time coordinate to a hit

H. Sadrozinski et al. Rept. Prog. Phys. 81 (2018) 026101

Timing for event reconstruction:

▶ Dedicated timing layer in a single point

▶ Timing at some points along the track

▶ Timing at each point along the track

Is it possible to build a detector with excellent time and position resolution?

→ Spatial resolution [10’s of µm] + timing resolution [∼ 10 ps]
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Time resolution of time tagging detectors

σ2
t = σ2

timewalk + σ2
Landau + σ2

TDC + σ2
Jitter

▶ Time walk:
→ minimized by using Constant Fraction
Discriminator (CFD) for time reference

▶ Landau noise: non-uniformity in the energy
deposited per unit length
→ reduced for thinner sensors (50, 35 µm)

▶ TDC: resolution of the TDC (bin/
√
12)

▶ Jitter: proportional to σN/
dV
dt

→ reduced by increasing SNR with gain.

N. Cartiglia et al. PSD12 (2021)
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Low Gain Avalanche Detector (LGAD)

▶ Silicon detectors with charge
multiplication

▶ Gain layer provides a high-field
region

▶ Radiation hard (1015 neq/cm2)

▶ Low Noise (low shot noise)

▶ Improved SNR: 5-10 times better than current PIN detectors

▶ Good timing resolution:
σt = 30 ps → 50 µm thick LGADs (1.3 × 1.3 mm2)

▶ No-gain region ∼ 30-80 µm
A. Bisht et. el., Characterization of Novel trench-isolated LGADs for 4D tracking

→ No-gain region ∼ 3 µm
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LGADs: segmentation issue

▶ Segmentation in LGADs:

• Junction Termination Extensions (JTEs)
• p-Stop, and virtual Guard-Rings

▶ Pixel border is a dead region.

▶ The no-gain width depends on:

• technology (photolithography) constraints
• physical limits (maximum E fields) to

fulfill operational requirements (VBD)

▶ Intrinsic limit in reducing the inter-pad region
(Early edge breakdown).

Standard LGADs →
{

Good timing resolution

Poor spatial resolution
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LGADs: Fill Factor

Fill Factor = Areagain/Areatotal

Measurements with a micro-focused X-ray beam
(width ∼ 2 µm, 20 keV)

▶ LGAD µ-strip sensor (146 µm pitch)

▶ Nominal gain region: 80 µm → Nominal FF: 55%

▶ Measured FF: 40%

Measurements with a
pulsed laser.

▶ 180 µm pitch

▶ Nominal FF: 63%

▶ Measured FF: 58%

M. Andrä et al., “Development of low-energy X-ray detectors using LGAD sensors”
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Fill Factor: solution?

▶ New LGAD technology :

• JTE and p-stop → trench
• Trenches → drift/diffusion barrier

▶ Dead region is significantly reduced

▶ The trenches are < 1 µm wide and few
microns deep.

▶ Trenches are filled with SiO2

TI− LGADs →





Good timing resolution

Smaller gain− loss region

Improved spatial resolution

New batch fabricated under the RD50 collaboration

G. Paternoster et al., “Trench-Isolated Low Gain Avalanche Diodes”
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TI-LGADs: no-gain region width

250 × 375 µm, 1 trench

250 × 375 µm, 2 trenches

f (x) =

[
Erf

(
±x − c1

c2

)
+ 1

]
× c3 + c4,

Erf (x) =
2√
π
×
∫ x

0

e−t2dt

charge map @ -200 V

V1-1TR, V4-1TR, V4-2TR
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TI-LGADs: no-gain region width

V1-1TR V4-1TR V4-2TR
Layout Type
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40 µm → 3 µm

▶ No-gain region width < 15 µm
→ Better compared to all standard
LGADs

▶ Width of no-gain region for
V1-1TR layout is less than 5 µm for
both wafers
V1-1TR → Highest Fill-Factor

▶ Wafer 16 has lower no-gain region
width compared to wafer 11

▶ Red laser does not account for the
change in field in the bulk due to
trench

▶ Negative width of no-gain region is measured in W16, V1-1TR layout
(See next Slide)

▶ Wafer 16, V4-2TR → significant reduction of no-gain region width
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TI-LGADs: sum of pixel charge
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▶ IR Laser → W16: charge enhancement close to the trench region (higher
gain) for V1-1TR, V4-2TR.

▶ Higher gain in trench region artificially reduces width of the no-gain region.

TI-LGADs → to achieve high FF.

Large strip sensors using TI-LGADs.
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Space experiment requirements

▶ Large area to cover → O(m2)

▶ Low Earth Orbit Experiments
→Radiation is not an issue

▶ Rate is not as high as in HEP

▶ Power constraint
→ Reduce the number of channels

▶ Timing (∼ 50-100 ps) is desired

▶ “Typical” Silicon sensor
→ Strips (100 µm pitch)
→ 60-100 cm long
→ ∼ 1 cm2

Scaling LGAD channel size to 1 cm2

Capacitance?
Time resolution?
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Thickness and Gain Optimization

▶ LTspice simulation

▶ Sensor capacitance

▶ No Landau fluctuations (uniform charge deposition)

▶ Saturated velocities

▶ Total Noise = Amplifier ⊕ Sensor

[M. Centis Vignali et al. VCI (2022)]
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Thickness and Gain Optimization

[M. Centis Vignali et al. VCI (2022)]

LGAD thickness > 100 µm and gain ≈ 100
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Space LGADs

Production of new LGAD sensors under INFN project

▶ Optimized for large areas

▶ Pad and strip sensors

▶ Strips: 100 µm, 150 µm,
200 µm pitch

▶ Active thickness: 50 µm,
100 µm, 150 µm thick

▶ Gain implant dose and
energy optimized for high
gain using TCAD

▶ Signal propagation
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Gain: using IR LED

▶ T = 24◦ with illumination.

▶ 50 µm

▶ 100 µm

▶ 150 µm

▶ value of gain highly depends on the dose and energy of the implant

▶ less steep curves for better operating voltage
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Experimental Setup: Transient Current Technique (TCT)

Particulars TCT setup:

▶ Infra-Red (1060 nm) and Red (600 nm)
pulsed Laser
→ 10-15 µm spot

▶ X/Y translation stage (0.8 µm precision)
→ precise inter-pixel scan and DUT maps

▶ DAQ: 2.5 GHz, 20 GS/s

▶ Beam Monitor: normalization

▶ Collected charge is given as:

Q =

∫ tf

t0

I (t)dt

Waveform @ -200V
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Samples investigated

▶ Pad active area:

• A (6.25 mm2)
• B (25 mm2)
• C (100 mm2)

▶ Pad types:

• Type-0: Metal frame
• Type-1: Fully Metallized, Contacts at the

edge of the active area
• Type-2: Fully Metallized, Contacts covers all

active area

Type-0 Type-1 Type-2

abisht@fbk.eu LGADs for Space Application June 23, 2023 18 / 23



Gain: using TCT setup

Gain =
ChargeLGAD
ChargePIN

▶ Laser Intensity: 1 MIP

▶ Low bias voltage: gain value is similar

▶ High bias voltage: gain value has a spread of about 20%

▶ One device show low gain values compared to others
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Jitter Measurements

σjitter =
Noise (N)

Slew rate (dV /dt)

▶ Measurement (no averaging in Oscilloscope) → Noise estimation

▶ Measurement (256 averages in Oscilloscope) → Slew rate estimation
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First Jitter measurements of 1 cm2 LGADs

▶ Laser intensity: 1 MIP

▶ substrate thickness: 150
µm

▶ pad sizes:

A (6.25 mm2)

B (25 mm2)

C (100 mm2)

▶ Metallization:

□ metal frame

■ fully metallized

( fully metallized +
contact openings

σJitter < 50 ps for an LGAD 1 cm2 @ 600 V
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Summary

▶ Include timing measurement for each hit/track in the silicon tracker

▶ LGADs → suitable candidate based on the timing performance for HEP
experiments

▶ TI-LGADs show a no-gain region less than 5 µm (high Fill Factor).

▶ Increase active area of the LGADs → Gain ∼ O(100) and Thickness (>100
µm

▶ Increase the gain to about 100 for reduced Jitter values

▶ Space LGADs production optimized to study large area LGADs

▶ σJitter < 50 ps → 100 mm2 active area

▶ σJitter ∼ 20 ps → 6 mm2 active area.
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Current Status and Outlook

▶ Ongoing characterization of space LGADs → timing resolutions

▶ Possible beam test in future

▶ Space qualification test

Two new projects with LGADs for space applications

▶ INFN-FBK: ADA-5D

▶ PRIN: Pentadimensional Tracking Space Detector -PTSD

▶ PNRR: LGADs for TOF measurements

Thank you for your attention
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