Review of the situation without MS10 at the end of leveling with flat optics

S. Kostoglou, H. Bartosik, R. De Maria, G. Sterbini

Previous studies with round optics:

C-=1e-3 on_disp=1

$r=2.5, \beta^{*}=20 \mathrm{~cm}, I_{\text {oct }}=100 \mathrm{~A}$

With MS10

No MS10

Summary of findings with round optics:

- DA reduction in "No MS10" for EOL but DA target reached.
- Important to operate with on_disp=1 in noMS10 scenario at EOL

$\beta^{*}=7.5 / 30 \mathrm{~cm}$, no CC

C-=1e-3 on_disp=1

With MS10

No MS10

HL-LHC v1.5, Flat optics, End of leveling
$\mathrm{N}_{\mathrm{b}}=1 \times 10^{11} \mathrm{ppb}, \beta_{\mathrm{x}, \mathrm{PP} 1}^{*}=7.5 \mathrm{~cm}, \beta_{\mathrm{y}, \mathrm{IP} 1}^{*}=30 \mathrm{~cm}, \phi / 2_{\mathrm{IPI}(\mathrm{V}) / 5(\mathrm{H})}=250 \mu \mathrm{rad}$

HL-LHC v1.5, Flat optics, End of leveling, No MS 10 $\mathrm{N}_{\mathrm{b}}=1 \times 10^{11} \mathrm{ppb}, \beta_{\mathrm{x}, \mathrm{IP1}}^{*}=7.5 \mathrm{~cm}, \beta_{\mathrm{y}, \mathrm{IP} 1}^{*}=30 \mathrm{~cm}, \phi / 2_{\mathrm{IP}(\mathrm{V}) / 5(\mathrm{H})}=250 \mu \mathrm{rad}$

$\beta^{*}=7.5 / 18 \mathrm{~cm}$, with CC, H/V

C-=1e-3 on_disp=1

With MS10

No MS10

HL-LHC v1.5, Flat optics, End of leveling
$\mathrm{N}_{\mathrm{b}}=1 \times 10^{11} \mathrm{ppb}, \beta_{\mathrm{x}, \mathrm{PP} 1}^{*}=18 \mathrm{~cm}, \beta_{\mathrm{y}, \mathrm{PP} 1}^{*}=7.5 \mathrm{~cm}, \phi / 2 \mathrm{IPI(H)/5(V)}=250 \mu \mathrm{rad}$

HL-LHC v1.5, Flat optics, End of leveling, No MS 10 $\mathrm{N}_{\mathrm{b}}=1 \times 10^{11} \mathrm{ppb}, \beta_{\mathrm{x}, \mathrm{IP1}}^{*}=18 \mathrm{~cm}, \beta_{\mathrm{y}, \mathrm{IP1}}^{*}=7.5 \mathrm{~cm}, \phi / 2_{\mathrm{IP} \mid(\mathrm{H}) / 5(\mathrm{~V})}=250 \mu \mathrm{rad}$

$\beta^{*}=7.5 / 18 \mathrm{~cm}$, with CC, V/H

C-=1e-3 on_disp=1

With MS10

No MS10

HL-LHC v1.5, Flat optics, End of leveling
$\mathrm{N}_{\mathrm{b}}=1 \times 10^{11} \mathrm{ppb}, \beta_{\mathrm{x}, \mathrm{IP} 1}^{*}=7.5 \mathrm{~cm}, \beta_{y, I \mathrm{P} 1}^{*}=18 \mathrm{~cm}, \phi / 2 \mathrm{IPI}(\mathrm{V}) / 5(\mathrm{H})=250 \mu \mathrm{rad}$

HL-LHC v1.5, Flat optics, End of leveling, No MS10 $\mathrm{N}_{\mathrm{b}}=1 \times 10^{11} \mathrm{ppb}, \beta_{\mathrm{x}, \mathrm{IP1}}^{*}=7.5 \mathrm{~cm}, \beta_{y, I \mathrm{PI} 1}^{*}=18 \mathrm{~cm}, \phi / 2_{\mathrm{IPI}(\mathrm{V}) / 5(\mathrm{H})}=250 \mu \mathrm{rad}$

Chromatic coupling, w/o BB

$\beta^{*}=7.5 / 18 \mathrm{~cm}, \mathrm{HV}$, with cr

With MS10

Without MSt

$\beta^{*}=7.5 / 18 \mathrm{~cm}, \mathrm{VH}$, withrer

Summary

Studied impact of "noMS10" on DA with flat optics for

 EOL:- Studies with $7.5 / 30 \mathrm{~cm}$ without CC and $7.5 / 18 \mathrm{~cm}$ with CC (HV \& VH crossing).
- Important DA degradation: from a situation where the DA target was comfortably achieved for all optics to a situation where a a limited number or no working point can be found that meets DA target \rightarrow Absence of M10 more important for flat optics than round.
- As was done with round optics, investigated the role of chromatic coupling: without BB, increase of chromatic coupling in "noMS10", visible impact on FMAs. No clear impact of chromatic coupling with BB, DA degradation to be further understood.

Backup slides

FMAs without BB, with octupoles

$\beta^{*}=7.5 / 18 \mathrm{~cm}, \mathrm{HV}$, with cr

With MS10

Without MSt

$\beta^{*}=7.5 / 18 \mathrm{~cm}, \mathrm{VH}$, with Cr
 With MS10
 Without MSto

FMAs with BB, with octupoles

$\beta^{*}=7.5 / 18 \mathrm{~cm}, \mathrm{VH}$, withrer

FMAs with BB, without octupoles

$\beta^{*}=7.5 / 30 \mathrm{~cm}$, no $C_{\text {Wint baam beam }}$

Hilumi
Horizontal tune, Q_{x}

$\beta^{*}=7.5 / 18 \mathrm{~cm}, \mathrm{HV}$, wither ${ }^{\text {Whitboambeam }}$

Hilumi
Horizontal tune, Q_{x}

Horizontal tune, Q_{x}

$\beta^{*}=7.5 / 18 \mathrm{~cm}, \mathrm{VH}$, with wr ream

Horizontal tune, Q_{x}

$\mathrm{Hil}_{\text {HL-LHC }}^{\text {HRONECT }}$

Horizontal tune, Q_{x}

