

HL-LHC PROJE

WP10

Energy deposition & R2E

Deep acknowledgments: C. Accettura, R. De Maria, E. Grenier-Boley, F.X. Nuiry, R. Tomas Garcia, ...

Special Joint HiLumi WP2/WP5/WP10 Meeting

October 11th 2022

The context

- **MCBY**s: correctors in Q4-assembly.
- Less radiation resistant than Q4.
 - TCLMB mask designed to reduce the radiation due to p-p collision debris.
- HL-LHC optics version 1.5 (Nov.19) for IR1/5
- Fixed half crossing angle of 250 μrad.
- p-p collisions (σ = 85 mb) at 7+7 TeV.

An object known to be delicate

7th HL-LHC Collaboration Meeting, CIEMAT, Madrid

Peak power density profile in the 1st Q4 corrector inner coils (L = 5.0×10^{34} cm⁻² s⁻¹) 2.5 hor crossing Small mask Hereine 2 assuming a 2 mm radial enlargement Peak power density [mW / cm³] ~35 MGy / 3000 fb⁻¹ 1.5 MGy / 3000 fb⁻¹ 1 0.5 0 173 174 175 176 177 179 180 181 172 178 182 Distance from IP [m]

Nov 14th, 2017

TCLMB model: considered modifications

Incoming beam

Baseline

 $\Delta x = 5.06$ cm flat separation R_{in} = 3.01 cm circle radius Cu pipe thickness = 1 mm

Larger aperture to account for mechanical tolerances $\Lambda x = 5.22 \text{ cm}$ $R_{in} = 3.09 \text{ cm}$ Cu pipe thickness = 1.8 mm**WP2 WP10** WP5

Limit scenario of the baseline configuration

including mechanical/alignment tolerances Offering room to allocate tolerances up to reaching in the worst-case the baseline configuration

WP2

Reduced aperture to better

protect the MCBYs

 $\Lambda x = 4.9$ cm

 $R_{in} = 2.93 \text{ cm}$

Cu pipe thickness = 1.8 mm

WP5

WP10

Outgoing beam

Peak dose profile in the inner coils ($L_{int} = 4000 \text{ fb}^{-1}$) baseline - round: R=3.01cm / flat: Δx =5.06cm + 33 bigger aperture – round: R=3.09cm / flat: ∆x=5.22cm ⊢-30 reduced aperture – round: R=2.93cm / flat: Δx =4.9cm +---27 Peak dose [MGy / 4000 fb⁻¹] +70%24 21 18 15 12 9 -65% 6 3 0 174 175 176 177 178 181 182 179 180 Distance from IP [m]

-2

0 x [cm] 2

October 11

Aperture bargain: dimension assumptions

The dimensions of the mask aperture retained in the following for magnet dose calculations correspond to the worst-case scenario from the magnet protection point of view, where all tolerances maximize the actual mask aperture.

- Adapt the rectellipse by increasing the flat separation to gain beam aperture: from Dx = 5.06 to Dx = 5.2 cm.
- and reducing the circle radius to lower the peak dose: from R=3.01 cm to R = 2.95 cm.
- Inclusion of a 0.1 mm gap between the Cu chamber and the inermet block.

- Replace the rectellipse with a purely elliptical shape of:
 - minor axis = 5.5 cm
 - major axis = 5.9 cm
- Keep the 0.1 mm gap between the Cu chamber and the inermet block.

Peak dose profile in the inner coils ($L_{int} = 4000 \text{ fb}^{-1}$)

- Replace the rectellipse with a cut elliptical shape of:
 - minor axis = 5.5 cm
 - $\rightarrow Dx = 5.2 \text{ cm}$
 - major axis = 5.9 cm
- Keep the 0.1 mm gap between the Cu chamber and the inermet block.
- Limit the external radius to 5 cm.

Peak dose profile in the inner coils ($L_{int} = 4000 \text{ fb}^{-1}$)

 $\bigcirc \bigcirc$

- Elliptical shape of:
 - minor axis = 5.5 cm
 - major axis = 5.9 cm
- Keep the 0.1 mm gap between the Cu chamber and the inermet block.
- Keep 5 cm external radius.
- Increase the **Cu chamber** thickness to **2 mm**.

Peak dose profile for the different apertures: IR1 – <u>HC</u> with 250 μ rad half crossing angle

2D dose distribution at peak for the different apertures: IR1 – HC with 250 μ rad half crossing angle

cut ellipse

ellipse with 2mm Cu chamber

x [cm]

Special Joint HiLumi WP2/WP5/WP10 Meeting

October 11th 2022

Cumulative dose for the full HL-LHC lifetime

Peak dose (MGy) after 3000 fb ⁻¹ / 4000 fb ⁻¹	Aperture dimensions	HC	VC up+down
Baseline	∆x = 5.06 cm	6.0	6.4
	Φ = 6.02 cm	8.0	8.6
Adapted rectellipse	$\Delta x = 5.2 \text{ cm}$	4.7	3.5
	Φ = 5.9 cm	6.2	4.6
Ellipse	L1 = 5.5 cm	3.3	4.3
	L2 = 5.9 cm	4.4	5.7
Cut Ellipse	$\Delta x = 5.2 \text{ cm}$	3.8	3.2
	L2 = 5.9 cm	5.0	4.3
Ellipse with 2 mm	L1 = 5.5 cm	4.4	2.9
Cu chamber L2 = 5.9 cr		5.9	3.9

Cumulative dose until each LS

Peak dose (MGy)	Run 4	Run 5	Run 6	Total
	560 fb ⁻¹	924 fb ⁻¹ / 1465 fb ⁻¹	1440 fb ⁻¹ / 1780 fb ⁻¹	3000 fb ⁻¹ / 4000 fb ⁻¹
Baseline	1.1	1.8 / 2.9	2.9 / 3.6	6.0 / 8.0
$\Delta x = 5.06 \text{ cm} / \Phi = 6.02 \text{ cm}$	1.2	2.0 / 3.1	3.1 / 3.8	6.4 / 8.6
Adapted rectellipse	0.9	1.4 / 2.3	2.2 / 2.8	4.7 / 6.2
$\Delta x = 5.2 \text{ cm} / \Phi = 5.9 \text{ cm}$	0.6	1.1 / 1.7	1.7 / 2.0	3.5 / 4.6
Ellipse	0.6	1.0 / 1.6	1.6 / 2.0	3.3 / 4.4
L1 = 5.5 cm / L2 = 5.9 cm	0.8	1.3 / 2.1	2.1 / 2.5	4.3 / 5.7
Cut Ellipse	0.7	1.2 / 1.8	1.8 / 2.2	3.8 / 5.0
$\Delta x = 5.2 \text{ cm} / \text{L2} = 5.9 \text{ cm}$	0.6	1.0 / 1.6	1.5 / 1.9	3.2 / 4.3
Ellipse with 2 mm	0.8	1.4 / 2.2	2.1 / 2.6	4.4 / 5.9
Cu chamber	0.5	0.9 / 1.4	1.4 / 1.7	2.9 / 3.9

October 11th 2022

*VC up+down

*HC

Summary

- Various shapes of the TCLMB aperture for the outgoing beam were studied in FLUKA:
 - 1. Adapted rectellipse with increased flat separation and reduced circle radius;
 - 2. Plain ellipse;
 - 3. Cut ellipse with flat separation as 1.;
 - 4. Same ellipse as 2. with Cu chamber thickness increased to standard 2 mm.
- The simulation include in all cases the worst-case tolerances (+ 1 mm) as well as a 0.1 mm gap between the Cu chamber and the inermet block.
- For 3. and 4., the mask external radius was reduced from 7 to 5 cm.
- From the magnet protection point of view, all cases result in a *significant improvement* with respect to the baseline presented at the 111th TCC, being the **cut ellipse** (with 1.8 mm thick Cu chamber) the best solution.

