TCLM4 mask optimization for magnet protection effectiveness and optics flexibility

Marta Sabaté-Gilarte, Francesco Cerutti

WP10

Energy deposition \& R2E

Deep acknowledgments: C. Accettura, R. De Maria, E. GrenierBoley, F.X. Nuiry, R. Tomas Garcia, ...

The context

- MCBYs: correctors in Q4-assembly.
- Less radiation resistant than Q4.
- TCLMB mask designed to reduce the radiation due to $p-p$ collision debris.
- HL-LHC optics version 1.5 (Nov.19) for IR1/5
- Fixed half crossing angle of $250 \mu \mathrm{rad}$.
- p-p collisions $(\sigma=85 \mathrm{mb})$ at $7+7 \mathrm{TeV}$.

https://indico.cern.ch/event/1167566 Jun 7th, 2022

An object known to be delicate

TCLMB model: considered modifications

Baseline

$\Delta x=5.06 \mathrm{~cm}$ flat separation
$\mathrm{R}_{\text {in }}=3.01 \mathrm{~cm}$ circle radius
Cu pipe thickness $=1 \mathrm{~mm}$

Larger aperture to account for mechanical tolerances

$$
\begin{aligned}
& \Delta x=5.22 \mathrm{~cm} \\
& R_{\text {in }}=3.09 \mathrm{~cm}
\end{aligned}
$$

Cu pipe thickness $=1.8 \mathrm{~mm}$

Limit scenario of the baseline configuration including mechanical/alignment tolerances

Reduced aperture to better protect the MCBYs

$$
\begin{gathered}
\Delta \mathrm{x}=4.9 \mathrm{~cm} \\
\mathrm{R}_{\mathrm{in}}=2.93 \mathrm{~cm}
\end{gathered}
$$

Cu pipe thickness $=1.8 \mathrm{~mm}$

WP2

Offering room to allocate tolerances up to reaching in the worst-case the baseline configuration

Peak dose profile for the different apertures: IR5 - VC with $\mathbf{+ 2 5 0} \boldsymbol{\mu}$ rad half crossing angle

Peak dose profile in the inner coils ($\mathrm{L}_{\text {int }}=4000 \mathrm{fb}^{-1}$)

Aperture bargain: dimension assumptions

The dimensions of the mask aperture retained in the following for magnet dose calculations correspond to the worst-case scenario from the magnet protection point of view, where all tolerances maximize the actual mask aperture.

Worst-case for magnet protection (WP10)

$$
\begin{aligned}
\Delta \mathrm{x} & =5.2 \mathrm{~cm} \\
\Phi & =5.9 \mathrm{~cm}
\end{aligned}
$$

Example: adapted rectellipse

+/- 1 mm mechanical tolerances

Peak dose profile for the different apertures: IR5 - VC with $\mathbf{+ 2 5 0} \boldsymbol{\mu}$ rad half crossing angle

- Adapt the rectellipse by increasing the flat separation to gain beam aperture: from $D x=5.06$ to $D x=5.2 \mathrm{~cm}$.
- and reducing the circle radius to lower the peak dose:
from $R=3.01 \mathrm{~cm}$ to $R=2.95 \mathrm{~cm}$.
- Inclusion of a 0.1 mm gap between the Cu chamber and the inermet block.

Peak dose profile for the different apertures: IR5 - VC with $\mathbf{+ 2 5 0} \boldsymbol{\mu r a d}$ half crossing angle

Peak dose profile in the inner coils ($\mathrm{L}_{\text {int }}=4000 \mathrm{fb}^{-1}$)

- Replace the rectellipse with a purely elliptical shape of:
- minor axis $=5.5 \mathrm{~cm}$
- major axis $=5.9 \mathrm{~cm}$
- Keep the 0.1 mm gap between the Cu chamber and the inermet block.

Peak dose profile for the different apertures: IR5 - VC with $\mathbf{+ 2 5 0} \boldsymbol{\mu}$ rad half crossing angle

- Replace the rectellipse with a cut elliptical shape of:
- minor axis $=5.5 \mathrm{~cm}$
- $\rightarrow D x=5.2 \mathrm{~cm}$
- major axis $=5.9 \mathrm{~cm}$
- Keep the 0.1 mm gap between the Cu chamber and the inermet block.
- Limit the external radius to 5 cm .

Peak dose profile for the different apertures: IR5 - VC with +250 $\boldsymbol{\mu}$ rad half crossing angle

- Elliptical shape of:
- minor axis $=5.5 \mathrm{~cm}$

Peak dose profile in the inner coils ($\mathrm{L}_{\text {int }}=4000 \mathrm{fb}^{-1}$)

- major axis $=5.9 \mathrm{~cm}$
- Keep the 0.1 mm gap between the Cu chamber and the inermet block.
- Keep 5 cm external radius.
- Increase the Cu chamber thickness to $\mathbf{2 ~ m m}$.

Peak dose profile for the different apertures: IR1 - HC with $250 \mu \mathrm{rad}$ half crossing angle

2D dose distribution at peak for the different apertures: IR1 - HC with $250 \mu \mathrm{rad}$ half crossing angle

ellipse with 2 mm Cu chamber

Cumulative dose for the full HL-LHC lifetime

Peak dose (MGy) after $3000 \mathrm{fb}^{-1}$ $/ 4.000 \mathrm{fb}^{-1}$	Aperture dimensions	HC	VC up+down
Baseline	$\Delta \mathrm{x}=5.06 \mathrm{~cm}$	6.0	
A $=6.02 \mathrm{~cm}$	8.0	8.6	
Adapted rectellipse	$\Delta \mathrm{x}=5.2 \mathrm{~cm}$	4.7	3.5
Ellipse	$\mathrm{L} 1=5.9 \mathrm{~cm}$	6.2	4.6
Cut Ellipse	$\Delta \mathrm{L}=5.2 \mathrm{~cm}$	3.3	4.3
Ellipse with 2 mm	$\mathrm{~L} 1=5.5 \mathrm{~cm}$	4.4	5.7
Cu chamber	$\mathrm{L} 2=5.9 \mathrm{~cm}$	3.8	3.2
	5.9	4.3	

Cumulative dose until each LS

Peak dose (MGy)	Run 4 $560 \mathrm{fb}^{-1}$	Run 5 $924 \mathrm{fb}^{-1} / 1465 \mathrm{fb}^{-1}$	Run 6 $1440 \mathrm{fb}^{-1} / 1780 \mathrm{fb}$	Total $3000 \mathrm{fb}^{-1} / 4000 \mathrm{fb}$
Baseline$\Delta \mathrm{x}=5.06 \mathrm{~cm} / \Phi=6.02 \mathrm{~cm}$	1.1	1.8 / 2.9	2.9 / 3.6	6.0 / 8.0
	1.2	2.0 / 3.1	3.1 / 3.8	6.4 / 8.6
Adapted rectellipse$\Delta x=5.2 \mathrm{~cm} / \Phi=5.9 \mathrm{~cm}$	0.9	1.4 / 2.3	2.2 / 2.8	4.7 / 6.2
	0.6	1.1 / 1.7	1.7 / 2.0	3.5 / 4.6
Ellipse$\mathrm{L} 1=5.5 \mathrm{~cm} / \mathrm{L} 2=5.9 \mathrm{~cm}$	0.6	1.0 / 1.6	1.6 / 2.0	3.3 / 4.4
	0.8	1.3 / 2.1	$2.1 / 2.5$	4.3 / 5.7
Cut Ellipse$\Delta x=5.2 \mathrm{~cm} / \mathrm{L} 2=5.9 \mathrm{~cm}$	0.7	1.2 / 1.8	$1.8 / 2.2$	3.8 / 5.0
	0.6	1.0 / 1.6	1.5 / 1.9	3.2 / 4.3
Ellipse with 2 mm Cu chamber	0.8	1.4 / 2.2	$2.1 / 2.6$	4.4 / 5.9
	0.5	0.9 / 1.4	1.4 / 1.7	2.9 / 3.9

Summary

- Various shapes of the TCLMB aperture for the outgoing beam were studied in FLUKA:

1. Adapted rectellipse with increased flat separation and reduced circle radius;
2. Plain ellipse;
3. Cut ellipse with flat separation as 1.;
4. Same ellipse as 2. with Cu chamber thickness increased to standard 2 mm .

- The simulation include in all cases the worst-case tolerances (+1 mm) as well as a 0.1 mm gap between the Cu chamber and the inermet block.
- For 3. and 4., the mask external radius was reduced from 7 to 5 cm .
- From the magnet protection point of view, all cases result in a significant improvement with respect to the baseline presented at the 111th TCC, being the cut ellipse (with 1.8 mm thick Cu chamber) the best solution.

