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b?(fm) xProbabilistic interpretation of GPDs as Fourier
trafo of impact parameter dependent PDFs

H(x, 0,−∆2
⊥) −→ q(x,b⊥)

E(x, 0,−∆2
⊥) −→ ⊥ distortion of PDFs when the

target is ⊥ polarized

Q2 evolution of DVCS −→ GPDs

→֒ SSA in SIDID/DY (Sivers & Boer-Mulders)

’Color decoherence’ at large Q2/small x

→֒ twist-3 quark-gluon correlations:
∫

dxx2ḡ2(x) &
∫

dxx2ē(x)

Summary

~pγ ~pN d

u

π+
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Generalized Parton Distributions (GPDs)

GPDs: decomposition of form factors at a given value of t, w.r.t. the
average momentum fraction x = 1

2 (xi + xf ) of the active quark

∫

dxHq(x, ξ, t) = F q
1 (t)

∫

dxH̃q(x, ξ, t) = Gq
A(t)

∫

dxEq(x, ξ, t) = F q
2 (t)

∫

dxẼq(x, ξ, t) = Gq
P (t),

xi and xf are the momentum fractions of the quark before and
after the momentum transfer; 2ξ = xf − xi

GPDs can be probed in deeply virtual Compton scattering (DVCS)
as well as deeply virtual meson production (DVMP)

γ
∗ γγ

∗
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Impact parameter dependent PDFs

define ⊥ localized state [D.Soper,PRD15, 1141 (1977)]

∣

∣p+,R⊥ = 0⊥, λ
〉

≡ N
∫

d2p⊥

∣

∣p+,p⊥, λ
〉

Note: ⊥ boosts in IMF form Galilean subgroup⇒ this state has
R⊥ ≡ 1

P+

∫

dx−d2x⊥ x⊥T
++(x) =

∑

i xiri,⊥ = 0⊥

(cf.: working in CM frame in nonrel. physics)

define impact parameter dependent PDF

q(x,b⊥) ≡
∫

dx−

4π

〈

p+,R⊥ = 0⊥

∣

∣ q̄(−x
−

2
,b⊥)γ

+q(
x−

2
,b⊥)

∣

∣p+,R⊥ = 0⊥

〉

eixp
+x−

→֒ q(x,b⊥) =
∫

d2
∆⊥

(2π)2 e
i∆⊥·b⊥H(x, 0,−∆2

⊥),

∆q(x,b⊥) =
∫

d2
∆⊥

(2π)2 e
i∆⊥·b⊥H̃(x, 0,−∆2

⊥),
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Impact parameter dependent PDFs

No relativistic corrections (Galilean subgroup!)

→֒ corrolary: interpretation of 2d-FT of F1(Q
2) as charge density in

transverse plane also free from relativistic corrections (Soper
1977; MB 2003)

q(x,b⊥) has probabilistic interpretation as number density

ξ = 0 essential for probabilistic interpretation

〈

p+′, 0⊥
∣

∣ b†(x,b⊥)b(x,b⊥)
∣

∣p+, 0⊥
〉

∼
∣

∣b(x,b⊥)〉|p+, 0⊥
∣

∣

2

works only for p+ = p+′

Reference point for IPDs is transverse center of (longitudinal)
momentum R⊥ ≡

∑

i xiri,⊥

→֒ for x→ 1, active quark ‘becomes’ COM, and q(x,b⊥) must
become very narrow (δ-function like)

→֒ H(x, 0,−∆2
⊥) must become ∆⊥ indep. as x→ 1 (MB, 2000)

→֒ consistent with lattice results for first few moments GPDs, Angular Momentum, and TMDs – p.5/28
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x = momentum fraction of the quark

~b =⊥ position of the quark

unpolarized p (MB,2000)
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Transversely Deformed Distributions and E(x, 0,−∆2
⊥)

M.B., Int.J.Mod.Phys.A18, 173 (2003)

So far: only unpolarized (or long. pol.) nucleon! In general (ξ = 0):

∫

dx−

4π e
ip+x−x 〈P+∆,↑|q̄(0) γ+q(x−)|P,↑〉 = H(x,0,−∆2

⊥)
∫

dx−

4π e
ip+x−x 〈P+∆,↑|q̄(0) γ+q(x−)|P,↓〉 = −∆x−i∆y

2M E(x,0,−∆2
⊥).

Consider nucleon polarized in x direction (in IMF)
|X〉 ≡ |p+,R⊥ = 0⊥, ↑〉+ |p+,R⊥ = 0⊥, ↓〉.

→֒ unpolarized quark distribution for this state:

q(x,b⊥) = H(x,b⊥)−
1

2M

∂

∂by

∫

d2∆⊥

(2π)2
E(x, 0,−∆2

⊥)e
−ib⊥·∆⊥

Physics: j+ = j0 + j3, and left-right asymmetry from j3 !
[X.Ji, PRL 91, 062001 (2003)]
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Transversely Deformed PDFs and E(x, 0,−∆2
⊥)

q(x,b⊥) in ⊥ polarized nucleon is deformed compared to
longitudinally polarized nucleons !

q(x,b⊥) = H(x,b⊥)−
1

2M

∂

∂by

∫

d2∆⊥

(2π)2
E(x, 0,−∆2

⊥)e
−ib⊥·∆⊥

mean ⊥ deformation of flavor q (⊥ flavor dipole moment)

dqy ≡
∫

dx

∫

d2b⊥q(x,b⊥)by =
1

2M

∫

dxEq(x, 0, 0) =
κpq
2M

κp = 1.913 = 2
3κ

p
u − 1

3κ
p
d + ...

→֒ neglecting strange (and heavier) quarks:
κpu = 2κp + κn = 1.673 ⇒ shift in +ŷ direction

κpd = 2κn + κp = −2.033 ⇒ shift in −ŷ direction

for proton polarized in +x̂ direction
dqy = O(±0.2fm)
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u(x,b⊥) d(x,b⊥)

~pγ∗
ẑ

ŷ
jz > 0

jz < 0

p polarized in +x̂ direction (MB,2003)

virtual photon ‘sees’ enhancement
when quark currents point in
direction opposite to photon
momentum

→֒ sideways shift of quark distributions

sign & magnitude of shift (model-
independently) predicted to be re-
lated to the proton/neutron anoma-
lous magnetic moment!
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The Ji-relation (poor man’s derivation)

What distinguishes the Ji-decomposition from other
decompositions is the fact that Lq can be constrained by
experiment:

〈 ~Jq〉 = ~S

∫ 1

−1

dxx [Hq(x, ξ, 0) + Eq(x, ξ, 0)]

(nucleon at rest; ~S is nucleon spin)

→֒ Lz
q = Jz

q − 1
2∆q

derivation (MB-version):
consider nucleon state that is an eigenstate under rotation
about the x̂-axis (e.g. nucleon polarized in x̂ direction with
~p = 0 (wave packet if necessary)

for such a state, 〈T 00
q y〉 = 0 = 〈T zz

q y〉 and 〈T 0y
q z〉 = −〈T 0z

q y〉
→֒ 〈T++

q y〉 = 〈T 0y
q z − T 0z

q y〉 = 〈Jx
q 〉

→֒ relate 2nd moment of ⊥ flavor dipole moment to Jx
q
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The Ji-relation (poor man’s derivation)

derivation (MB-version):
consider nucleon state that is an eigenstate under rotation
about the x̂-axis (e.g. nucleon polarized in x̂ direction with
~p = 0 (wave packet if necessary)

for such a state, 〈T 00
q y〉 = 0 = 〈T zz

q y〉 and 〈T 0y
q z〉 = −〈T 0z

q y〉
→֒ 〈T++

q y〉 = 〈T 0y
q z − T 0z

q y〉 = 〈Jx
q 〉

→֒ relate 2nd moment of ⊥ flavor dipole moment to Jx
q

effect sum of two effects:
〈T++y〉 for a point-like transversely polarized nucleon
〈T++

q y〉 for a quark relative to the center of momentum of a
transversely polarized nucleon

2nd moment of ⊥ flavor dipole moment for point-like nucleon

ψ =

(

f(r)
~σ·~p

E+mf(r)

)

χ with χ =
1√
2

(

1

1

)
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The Ji-relation (poor man’s derivation)

derivation (MB-version):

T 0z
q = iq̄

(

γ0∂z + γz∂0
)

q

since ψ†∂zψ is even under y → −y, iq̄γ0∂zq does not
contribute to 〈T 0zy〉

→֒ using i∂0ψ = Eψ, one finds

〈T 0zby〉 = E

∫

d3rψ†γ0γzψy = E

∫

d3rψ†

(

0 σz

σz 0

)

ψy

=
2E

E +M

∫

d3rχ†σzσyχf(r)(−i)∂yf(r)y =
E

E +M

∫

d3rf2(r)

consider nucleon state with ~p = 0, i.e. E =M &
∫

d3rf2(r) = 1

→֒ 2nd moment of ⊥ flavor dipole moment 〈T++
q y〉 = 〈T 0zby〉 = 1

2

→֒ ‘overall shift’ of nucleon COM yields contribution
1
2

∫

dxxHq(x, 0, 0) to 〈T++
q y〉
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The Ji-relation (poor man’s derivation)

spherically symmetric wave packet for Dirac particle with Jx = 1
2

centered around the origin has ⊥ center of momentum 1
M 〈T++

q by〉
not at origin, but at 1

2M !

consistent with

1

2
= 〈Jx〉 = 〈

(

T 0zby − T 0ybz
)

〉 = 2〈T 0zby〉 = 〈T++by〉

‘overall shift of ⊥ COM yields 〈T++
q by〉 = 1

2

∫

dxxHq(x, 0, 0)

intrinsic distortion adds 1
2

∫

dxxEq(x, 0, 0) to that

→֒
〈 ~Jq〉 = ~S

∫ 1

−1

dxx [Hq(x, ξ, 0) + Eq(x, ξ, 0)]
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ADV CS ?
 GPDs

Ji relation Jq =
∫ 1

0
dxx [H(x, ξ, 0) + E(x, ξ, 0)] requires

GPDs(x, ξ, 0) for (common) fixed ξ for all x

transverse imaging requires GPDs for ξ = 0

ADV CS(ξ, t) −→
∫ 1

−1
dxGPD(+)(x,ξ,t)

x−ξ+iε

ξ longitudinal momentum transfer on the target ξ = p+′−p+

p+′+p+

x (average) momentum fraction of the active quark x = k+′+p+

p+′+p+

ℑADV CS(ξ, t) −→ GPD(+)(ξ, ξ, t)

only sensitive to ‘diagonal’ x = ξ

limited ξ range, e.g. −t = 4ξ2M2+∆
2
⊥

1−ξ2 implies ξ > ξmin for fixed
t

ℜADV CS(ξ, t) −→
∫ 1

−1
dxGPD(+)(x,ξ,t)

x−ξ probes GPDs off the
diagonal, but ...
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A(ξ, t)←→ GPD(+)(ξ, ξ, t), ∆(t)

(Anikin, Teryaev, Diehl, Ivanov, Brodsky, Szczepaniak, ...):
dispersion relation for DVCS amplitude

ℜA(ν, t, Q2) =
ν2

π

∫ ∞

0

dν′2

ν′2
ℑA(ν′, t, Q2)

ν′2 − ν2 +∆(t, Q2)

In combination with LO factorization (A =
∫ 1

−1
dxH(x,ξ,t,Q2)

x−ξ+iε )

ℜA(ξ, t, Q2) =

∫ 1

−1

dx
H(x, ξ, t, Q2)

x− ξ =

∫ 1

−1

dx
H(x, x, t, Q2)

x− ξ +∆(t, Q2)

Earlier derived from polynomiality
(Goeke,Polyakov,Vanderhaeghen)

→֒ ‘Condense’ information A(ξ, t, Q2)↔
{

GPD(ξ, ξ, t, Q2)

∆(t, Q2)contained in ADV CS (fixed Q2)
into GPD(x, x, t, Q2) & ∆(t, Q2)
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A(ξ, t)←→ GPD(ξ, ξ, t), ∆(t)

ℜA(ξ, t) =
∫ 1

−1
dxH(x,ξ,t)

x−ξ probes GPDs for x 6= ξ, but new

information can be ‘projected back’ onto diagonal plus D-term!

remaining ‘new’ (not in ℑA) info on GPDs after ‘projecting back’
onto diagonal:

D-form factor

constraints from
∫

dxGPD(x,x,t)
x−ξ on GPD(ξ, ξ, t) in

kinematically inaccessible range ξ < ξmin & ξ > ξmax

Information away from diagonal (x = ξ): Q2 evolution: changes x
distribution in a known way for fixed ξ
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DVCS GPD(x, ξ, t) (a mathematical exercise)

GPD(x, ξ, t, Q2) = (1− x2)
∞
∑

n=0

C3/2
n (x)

n
∑

m=0(even)

anm(ξ)Cn−m(ξ, t, Q2)

C
3/2
n (x) Gegenbauer polynomials; anm(ξ) known polynomial

Ck(ξ, t, Q2) unknown, but evolve with known power ∼ γk of αs(Q
2)

consider x = ξ (relabel: k = n−m)

GPD(ξ, ξ, t, Q2) = (1− ξ2)
∞
∑

k=0

Ck(ξ, t, Q2)fk(ξ) (1)

with fk(ξ) =
∑∞

m=0(even) am+k,m(ξ)C
3/2
m+k(ξ) known function.

for fixed ξ, each term in (1) evolves with different γk

→֒ from Q2-dependence of GPD(ξ, ξ, t, Q2) (fixed ξ and t) over ‘wide’
range of Q2, in principle possible to determine Ck(ξ, t, Q2)

→֒ GPD(x, ξ, t, Q2) for x 6= ξ model-independently! GPDs, Angular Momentum, and TMDs – p.17/28



DVCS GPD(x, ξ, t) (a mathematical exercise)

→֒ from Q2-dependence of GPD(ξ, ξ, t, Q2) (fixed ξ and t) over ‘wide’
range of Q2, in principle possible to determine GPD(x, ξ, t, Q2) for
x 6= ξ model-independently!

issues:
higher twist ‘contamination’
higher order evolution kernel

limited coverage in Q2 (here, an EIC would be a giant leap!)
and ξ
singular shape of GPDs (cusp at x = ξ) requires many
polynomials in Gegenbauer expansion
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x = 0.1

u(x,b⊥) d(x,b⊥)

~pγ∗
ẑ

ŷ
jz > 0

jz < 0

p polarized in +x̂ direction (MB,2003)

virtual photon ‘sees’ enhancement
when quark currents point in
direction opposite to photon
momentum

→֒ sideways shift of quark distributions

sign & magnitude of shift (model-
independently) predicted to be re-
lated to the proton/neutron anoma-
lous magnetic moment!
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’Chromodynamik Lensing: GPD←→ SSA

example: γ∗p→ πX

~pγ ~pN d

u

π+

u, d distributions in ⊥ polarized proton have left-right asymmetry in
⊥ position space (T-even!); sign “determined” by κu & κd

attractive FSI deflects active quark towards the center of
momentum

→֒ FSI translates position space distortion (before the quark is
knocked out) in +ŷ-direction into momentum asymmetry that
favors −ŷ direction

→֒ correlation between sign of κpq and sign of SSA: f⊥q
1T ∼ −κpq

f⊥q
1T ∼ −κpq confirmed by HERMES data (also consistent with

COMPASS deuteron data f⊥u
1T + f⊥d

1T ≈ 0)
GPDs, Angular Momentum, and TMDs – p.20/28



f⊥1T (x,k⊥)DY = −f⊥1T (x,k⊥)SIDIS

a) b)

time reversal: FSI↔ ISI

SIDIS: compare FSI for ‘red’ q that is being knocked out with ISI for an
anti-red q̄ that is about to annihilate that bound q

→֒ FSI for knocked out q is attractive

DY: nucleon is color singlet→ when to-be-annihilated q is ‘red’, the
spectators must be anti-red

→֒ ISI with spectators is repulsive

test of this relation is a test of TMD factorization
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Color Decoherence and Evolution of SSAs

LO Evolution equations for SSAs known (Qiu & Sterman +
others), but evolution of Sivers function f⊥1T requires ’off-diagonal’
quark-gluon correlations (f⊥1T related to ’diagonal’ quark-gluon
correlations

→֒ Measurement of f⊥1T at one Q2 not sufficient to predict f⊥1T at
higher Q2!

What to expect?
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Color Decoherence and Evolution of SSAs

’Chromodynamic lensing’ mechanism for ⊥ SSA requires long
range coherence of color field

before ’dreesing’) active quark ’dressed’ with glue

QCD-evolution destroys
color coherence:

consider ’red’ quark
→֒ attracted to ’anti-red’ spectators

after ’dressing’ itself with a gluon, previously ’red’ quark more
likely to be ’blue’ or ’green’

→֒ after dressing, attraction to ’far away’ spectators mostly gone

only attracted to very close by (at high Q2) gluon from dressing
→֒ expect no ⊥ SSA from long-range color fields after dressing!!!

at high Q2, quarks at low x likely to have dressed themselves with
perturbative gluon

→֒ fraction of quarks at low x/high Q2 that still ’sees’ long range
coherent color field significantly decreased

→֒ ’Chromodynamic lensing’ mechanism for ⊥ SSA suppressed!
GPDs, Angular Momentum, and TMDs – p.23/28



Quark-Gluon Correlations (Introduction)

(longitudinally) polarized polarized DIS at leading twist −→
‘polarized quark distribution’ gq1(x) = q↑(x) + q̄↑(x)− q↓(x)− q̄↓(x)
1
Q2 -corrections to X-section involve ‘higher-twist’ distribution

functions, such as g2(x)

σLL ∝ g1 −
2Mx

ν
g2

g2(x) involves quark-gluon correlations and does not have a
parton interpretation as difference between number densities

for ⊥ polarized target, g1 and g2 contribute equally to σLT

σLT ∝ gT ≡ g1 + g2

→֒ ‘clean’ separation between higher order corrections to leading
twist (g1) and higher twist effects (g2)

what can one learn from g2?
GPDs, Angular Momentum, and TMDs – p.24/28



Quark-Gluon Correlations (QCD analysis)

g2(x) = gWW
2 (x) + ḡ2(x), with gWW

2 (x) ≡ −g1(x) +
∫ 1

x
dy
y g1(y)

ḡ2(x) involves quark-gluon correlations, e.g.

∫

dxx2ḡ2(x) =
1

3
d2 =

1

6MP+2Sx

〈

P, S
∣

∣q̄(0)gG+y(0)γ+q(0)
∣

∣P, S
〉

√
2G+y ≡ G0y +Gzy = −Ey +Bx

sometimes called color-electric and magnetic polarizabilities

2M2~SχE =
〈

P, S
∣

∣

∣

~ja × ~Ea

∣

∣

∣
P, S

〉

& 2M2~SχB =
〈

P, S
∣

∣

∣
j0a ~Ba

∣

∣

∣
P, S

〉

with d2 = 1
4 (χE + 2χM ) — but these names are misleading!
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Quark-Gluon Correlations (Interpretation)

ḡ2(x) involves quark-gluon correlations, e.g.

∫

dxx2ḡ2(x) =
1

3
d2 =

1

6MP+2Sx

〈

P, S
∣

∣q̄(0)gG+y(0)γ+q(0)
∣

∣P, S
〉

QED: q̄(0)eF+y(0)γ+q(0) correlator between quark density q̄γ+q
and (ŷ-component of the) Lorentz-force

F y = e
[

~E + ~v × ~B
]y

= e (Ey −Bx) = −e
(

F 0y + F zy
)

= −e
√
2F+y.

for charged paricle moving with ~v = (0, 0,−1) in the −ẑ direction

→֒ matrix element of q̄(0)eF+y(0)γ+q(0) yields γ+ density (density
relevant for DIS in Bj limit!) weighted with the Lorentz force that a
charged particle with ~v = (0, 0,−1) would experience at that point

→֒ d2 a measure for the color Lorentz force acting on the struck quark
in SIDIS in the instant after being hit by the virtual photon

〈F y(0)〉 = −2M2d2 (rest frame; Sx = 1)
GPDs, Angular Momentum, and TMDs – p.26/28



Quark-Gluon Correlations (Interpretation)

x2-moment of twist-4 polarized PDF g3(x)
∫

dxx2g3(x) 
〈

P, S
∣

∣

∣
q̄(0)gG̃µν(0)γνq(0)

∣

∣

∣
P, S

〉

∼ f2
→֒ different linear combination f2 = χE − χB of χE and χM

→֒ combine with d2 ⇒ disentangle electric and magnetic force

What should one expect (sign/magnitude)?
κpq −→ signs of deformation (u/d quarks in ±ŷ direction for
proton polarized in +x̂ direction −→ expect force in ∓ŷ

→֒ d2 positive/negative for u/d quarks in proton

large NC : du/p2 = −dd/p2 (consistent with f⊥u
1T + f⊥d

1T ≈ 0)

F y = −2M2d2 = −10GeV
fm d2 ⇒ expect |d2| ≪ 1

lattice (Göckeler et al., 2005): du2 ≈ 0.010 and dd2 ≈ −0.0056
→֒ 〈F y

u (0)〉 ≈ −100MeV
fm 〈F y

d (0)〉 ≈ 56MeV
fm

x2-moment of chirally odd twist-3 PDF e(x) −→ transverse force on

transversely polarized quark in unpolarized target (↔ Boer-Mulders h⊥1 )
GPDs, Angular Momentum, and TMDs – p.27/28



Summary

GPDs FT←→ IPDs (impact parameter dependent PDFs)

Eq(x, 0,−∆2
⊥)↔ κq/p (contribution from quark flavor q to anom

magnetic moment)

Eq(x, 0,−∆2
⊥) −→

GPDs for x 6= ξ from Q2 evolution ⊥ deformation of PDFs for ⊥
polarized target

⊥ deformation↔ (sign of) SSA (Sivers; Boer-Mulders)

Q2 evolution −→ Color decoherence

⊥ deformation↔ (sign of) quark-gluon correlations (
∫

dxx2ḡ2(x),
∫

dxx2ē(x) )
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