GPDs, Angular Momentum, and TMDs

Matthias Burkardt

burkardt@nmsu.edu

New Mexico State University

Outline

- Probabilistic interpretation of GPDs as Fourier trafo of impact parameter dependent PDFs
- $H\left(x, 0,-\boldsymbol{\Delta}_{\perp}^{2}\right) \longrightarrow q\left(x, \mathbf{b}_{\perp}\right)$
- $E\left(x, 0,-\Delta_{\perp}^{2}\right) \longrightarrow \perp$ distortion of PDFs when the target is \perp polarized
- Q^{2} evolution of DVCS \longrightarrow GPDs
\hookrightarrow SSA in SIDID/DY (Sivers \& Boer-Mulders)
- 'Color decoherence' at large $Q^{2} /$ small x
\hookrightarrow twist-3 quark-gluon correlations:
$\int d x x^{2} \bar{g}_{2}(x) \& \int d x x^{2} \bar{e}(x)$
- Summary

Generalized Parton Distributions (GPDs)

- GPDs: decomposition of form factors at a given value of t, w.r.t. the average momentum fraction $x=\frac{1}{2}\left(x_{i}+x_{f}\right)$ of the active quark

$$
\begin{array}{rlr}
\int d x H_{q}(x, \xi, t) & =F_{1}^{q}(t) & \int d x \tilde{H}_{q}(x, \xi, t)=G_{A}^{q}(t) \\
\int d x E_{q}(x, \xi, t) & =F_{2}^{q}(t) \quad \int d x \tilde{E}_{q}(x, \xi, t)=G_{P}^{q}(t)
\end{array}
$$

- x_{i} and x_{f} are the momentum fractions of the quark before and after the momentum transfer; $2 \xi=x_{f}-x_{i}$
- GPDs can be probed in deeply virtual Compton scattering (DVCS) as well as deeply virtual meson production (DVMP)

Impact parameter dependent PDFs

- define \perp localized state [D.Soper,PRD15, 1141 (1977)]

$$
\left|p^{+}, \mathbf{R}_{\perp}=\mathbf{0}_{\perp}, \lambda\right\rangle \equiv \mathcal{N} \int d^{2} \mathbf{p}_{\perp}\left|p^{+}, \mathbf{p}_{\perp}, \lambda\right\rangle
$$

Note: \perp boosts in IMF form Galilean subgroup \Rightarrow this state has
$\mathbf{R}_{\perp} \equiv \frac{1}{P^{+}} \int d x^{-} d^{2} \mathbf{x}_{\perp} \mathbf{x}_{\perp} T^{++}(x)=\sum_{i} x_{i} \mathbf{r}_{i, \perp}=\mathbf{0}_{\perp}$ (cf.: working in CM frame in nonrel. physics)

- define impact parameter dependent PDF
$q\left(x, \mathbf{b}_{\perp}\right) \equiv \int \frac{d x^{-}}{4 \pi}\left\langle p^{+}, \mathbf{R}_{\perp}=\mathbf{0}_{\perp}\right| \bar{q}\left(-\frac{x^{-}}{2}, \mathbf{b}_{\perp}\right) \gamma^{+} q\left(\frac{x^{-}}{2}, \mathbf{b}_{\perp}\right)\left|p^{+}, \mathbf{R}_{\perp}=\mathbf{0}_{\perp}\right\rangle e^{i x p^{+} x^{-}}$

$$
\hookrightarrow \quad \begin{array}{cc}
q\left(x, \mathbf{b}_{\perp}\right) & =\int \frac{d^{2} \boldsymbol{\Delta}_{\perp}}{(2 \pi)^{2}} e^{i \boldsymbol{\Delta}_{\perp} \cdot \mathbf{b}_{\perp}} H\left(x, 0,-\boldsymbol{\Delta}_{\perp}^{2}\right), \\
\Delta q\left(x, \mathbf{b}_{\perp}\right) & =\int \frac{d^{2} \boldsymbol{\Delta}_{\perp}}{(2 \pi)^{2}} e^{i \boldsymbol{\Delta}_{\perp} \cdot \mathbf{b}_{\perp}} \tilde{H}\left(x, 0,-\boldsymbol{\Delta}_{\perp}^{2}\right),
\end{array}
$$

Impact parameter dependent PDFs

- No relativistic corrections (Galilean subgroup!)
\hookrightarrow corrolary: interpretation of 2d-FT of $F_{1}\left(Q^{2}\right)$ as charge density in transverse plane also free from relativistic corrections (Soper 1977; MB 2003)
- $q\left(x, \mathbf{b}_{\perp}\right)$ has probabilistic interpretation as number density
- $\xi=0$ essential for probabilistic interpretation

$$
\left\langle p^{+\prime}, 0_{\perp}\right| b^{\dagger}\left(x, \mathbf{b}_{\perp}\right) b\left(x, \mathbf{b}_{\perp}\right)\left|p^{+}, 0_{\perp}\right\rangle \sim\left|b\left(x, \mathbf{b}_{\perp}\right)\right\rangle\left|p^{+}, 0_{\perp}\right|^{2}
$$

works only for $p^{+}=p^{+\prime}$

- Reference point for IPDs is transverse center of (longitudinal) momentum $\mathbf{R}_{\perp} \equiv \sum_{i} x_{i} \mathbf{r}_{i, \perp}$
\hookrightarrow for $x \rightarrow 1$, active quark 'becomes' COM, and $q\left(x, \mathbf{b}_{\perp}\right)$ must become very narrow (δ-function like)
$\hookrightarrow H\left(x, 0,-\boldsymbol{\Delta}_{\perp}^{2}\right)$ must become $\boldsymbol{\Delta}_{\perp}$ indep. as $x \rightarrow 1(\mathrm{MB}, 2000)$
\hookrightarrow consistent with lattice results for first few moments
$q\left(x, \mathbf{b}_{\perp}\right)$ for unpol. p

unpolarized p (MB,2000)

$x=$ momentum fraction of the quark
$\vec{b}=\perp$ position of the quark

Transversely Deformed Distributions and $E\left(x, 0,-\Delta_{\perp}^{2}\right.$

M.B., Int.J.Mod.Phys.A18, 173 (2003)

- So far: only unpolarized (or long. pol.) nucleon! In general $(\xi=0)$:

$$
\begin{aligned}
\int \frac{d x^{-}}{4 \pi} e^{i p^{+} x^{-} x}\langle P+\Delta, \uparrow| \bar{q}(0) \gamma^{+} q\left(x^{-}\right)|P, \uparrow\rangle & =H\left(x, 0,-\Delta_{\perp}^{2}\right) \\
\int \frac{d x^{-}}{4 \pi} e^{i p^{+} x^{-} x}\langle P+\Delta, \uparrow| \bar{q}(0) \gamma^{+} q\left(x^{-}\right)|P, \downarrow\rangle & =-\frac{\Delta_{x^{-}-i \Delta_{y}}^{2 M}}{2 M}\left(x, 0,-\Delta_{\perp}^{2}\right)
\end{aligned}
$$

- Consider nucleon polarized in x direction (in IMF)

$$
|X\rangle \equiv\left|p^{+}, \mathbf{R}_{\perp}=\mathbf{0}_{\perp}, \uparrow\right\rangle+\left|p^{+}, \mathbf{R}_{\perp}=\mathbf{0}_{\perp}, \downarrow\right\rangle
$$

\hookrightarrow unpolarized quark distribution for this state:

$$
q\left(x, \mathbf{b}_{\perp}\right)=\mathcal{H}\left(x, \mathbf{b}_{\perp}\right)-\frac{1}{2 M} \frac{\partial}{\partial b_{y}} \int \frac{d^{2} \boldsymbol{\Delta}_{\perp}}{(2 \pi)^{2}} E\left(x, 0,-\boldsymbol{\Delta}_{\perp}^{2}\right) e^{-i \mathbf{b}_{\perp} \cdot \boldsymbol{\Delta}_{\perp}}
$$

- Physics: $j^{+}=j^{0}+j^{3}$, and left-right asymmetry from j^{3} ! [X.Ji, PRL 91, 062001 (2003)]

Transversely Deformed PDFs and $E\left(x, 0,-\Delta_{\perp}^{2}\right)$

- $q\left(x, \mathbf{b}_{\perp}\right)$ in \perp polarized nucleon is deformed compared to longitudinally polarized nucleons !

$$
q\left(x, \mathbf{b}_{\perp}\right)=\mathcal{H}\left(x, \mathbf{b}_{\perp}\right)-\frac{1}{2 M} \frac{\partial}{\partial b_{y}} \int \frac{d^{2} \boldsymbol{\Delta}_{\perp}}{(2 \pi)^{2}} E\left(x, 0,-\boldsymbol{\Delta}_{\perp}^{2}\right) e^{-i \mathbf{b}_{\perp} \cdot \boldsymbol{\Delta}_{\perp}}
$$

- mean \perp deformation of flavor q (\perp flavor dipole moment)

$$
d_{y}^{q} \equiv \int d x \int d^{2} \mathbf{b}_{\perp} q\left(x, \mathbf{b}_{\perp}\right) b_{y}=\frac{1}{2 M} \int d x E_{q}(x, 0,0)=\frac{\kappa_{q}^{p}}{2 M}
$$

- $\kappa^{p}=1.913=\frac{2}{3} \kappa_{u}^{p}-\frac{1}{3} \kappa_{d}^{p}+\ldots$
\hookrightarrow neglecting strange (and heavier) quarks:
- $\kappa_{u}^{p}=2 \kappa_{p}+\kappa_{n}=1.673 \Rightarrow$ shift in $+\hat{y}$ direction
- $\kappa_{d}^{p}=2 \kappa_{n}+\kappa_{p}=-2.033 \Rightarrow$ shift in $-\hat{y}$ direction
- for proton polarized in $+\hat{x}$ direction
- $d_{y}^{q}=\mathcal{O}(\pm 0.2 f m)$
p polarized in $+\hat{x}$ direction (MB,2003)

$$
d\left(x, \mathbf{b}_{\perp}\right)
$$

- virtual photon 'sees' enhancement when quark currents point in direction opposite to photon momentum
\hookrightarrow sideways shift of quark distributions
- sign \& magnitude of shift (modelindependently) predicted to be related to the proton/neutron anomalous magnetic moment!

The Ji-relation (poor man's derivation)

- What distinguishes the Ji-decomposition from other decompositions is the fact that L_{q} can be constrained by experiment:

$$
\left\langle\vec{J}_{q}\right\rangle=\vec{S} \int_{-1}^{1} d x x\left[H_{q}(x, \xi, 0)+E_{q}(x, \xi, 0)\right]
$$

(nucleon at rest; \vec{S} is nucleon spin)
$\hookrightarrow L_{q}^{z}=J_{q}^{z}-\frac{1}{2} \Delta q$

- derivation (MB-version):
- consider nucleon state that is an eigenstate under rotation about the \hat{x}-axis (e.g. nucleon polarized in \hat{x} direction with $\vec{p}=0$ (wave packet if necessary)
- for such a state, $\left\langle T_{q}^{00} y\right\rangle=0=\left\langle T_{q}^{z z} y\right\rangle$ and $\left\langle T_{q}^{0 y} z\right\rangle=-\left\langle T_{q}^{0 z} y\right\rangle$
$\hookrightarrow\left\langle T_{q}^{++} y\right\rangle=\left\langle T_{q}^{0 y} z-T_{q}^{0 z} y\right\rangle=\left\langle J_{q}^{x}\right\rangle$
\hookrightarrow relate $2^{\text {nd }}$ moment of \perp flavor dipole moment to J_{q}^{x}

The Ji-relation (poor man's derivation)

- derivation (MB-version):
- consider nucleon state that is an eigenstate under rotation about the \hat{x}-axis (e.g. nucleon polarized in \hat{x} direction with $\vec{p}=0$ (wave packet if necessary)
- for such a state, $\left\langle T_{q}^{00} y\right\rangle=0=\left\langle T_{q}^{z z} y\right\rangle$ and $\left\langle T_{q}^{0 y} z\right\rangle=-\left\langle T_{q}^{0 z} y\right\rangle$
$\hookrightarrow\left\langle T_{q}^{++} y\right\rangle=\left\langle T_{q}^{0 y} z-T_{q}^{0 z} y\right\rangle=\left\langle J_{q}^{x}\right\rangle$
\hookrightarrow relate $2^{\text {nd }}$ moment of \perp flavor dipole moment to J_{q}^{x}
- effect sum of two effects:
- $\left\langle T^{++} y\right\rangle$ for a point-like transversely polarized nucleon
- $\left\langle T_{q}^{++} y\right\rangle$ for a quark relative to the center of momentum of a transversely polarized nucleon
- $2^{\text {nd }}$ moment of \perp flavor dipole moment for point-like nucleon

$$
\psi=\binom{f(r)}{\frac{\vec{\sigma} \cdot \vec{p}}{E+m} f(r)} \chi \quad \text { with } \quad \chi=\frac{1}{\sqrt{2}}\binom{1}{1}
$$

The Ji-relation (poor man's derivation)

- derivation (MB-version):
- $T_{q}^{0 z}=i \bar{q}\left(\gamma^{0} \partial^{z}+\gamma^{z} \partial^{0}\right) q$
- since $\psi^{\dagger} \partial_{z} \psi$ is even under $y \rightarrow-y, i \bar{q} \gamma^{0} \partial^{z} q$ does not contribute to $\left\langle T^{0 z} y\right\rangle$
\hookrightarrow using $i \partial_{0} \psi=E \psi$, one finds

$$
\begin{aligned}
\left\langle T^{0 z} b_{y}\right\rangle & =E \int d^{3} r \psi^{\dagger} \gamma^{0} \gamma^{z} \psi y=E \int d^{3} r \psi^{\dagger}\left(\begin{array}{cc}
0 & \sigma^{z} \\
\sigma^{z} & 0
\end{array}\right) \psi y \\
& =\frac{2 E}{E+M} \int d^{3} r \chi^{\dagger} \sigma^{z} \sigma^{y} \chi f(r)(-i) \partial^{y} f(r) y=\frac{E}{E+M} \int d^{3} r f^{2}(r)
\end{aligned}
$$

- consider nucleon state with $\vec{p}=0$, i.e. $E=M$ \&

$$
\int d^{3} r f^{2}(r)=1
$$

$\hookrightarrow 2^{\text {nd }}$ moment of \perp flavor dipole moment $\left\langle T_{q}^{++} y\right\rangle=\left\langle T^{0 z} b_{y}\right\rangle=\frac{1}{2}$
\hookrightarrow 'overall shift' of nucleon COM yields contribution $\frac{1}{2} \int d x x H_{q}(x, 0,0)$ to $\left\langle T_{q}^{++} y\right\rangle$

The Ji-relation (poor man's derivation)

- spherically symmetric wave packet for Dirac particle with $J_{x}=\frac{1}{2}$ centered around the origin has \perp center of momentum $\frac{1}{M}\left\langle T_{q}^{++} b_{y}\right\rangle$ not at origin, but at $\frac{1}{2 M}$!
- consistent with

$$
\frac{1}{2}=\left\langle J_{x}\right\rangle=\left\langle\left(T^{0 z} b^{y}-T^{0 y} b^{z}\right)\right\rangle=2\left\langle T^{0 z} b^{y}\right\rangle=\left\langle T^{++} b^{y}\right\rangle
$$

- 'overall shift of $\perp \mathrm{COM}$ yields $\left\langle T_{q}^{++} b_{y}\right\rangle=\frac{1}{2} \int d x x H_{q}(x, 0,0)$
- intrinsic distortion adds $\frac{1}{2} \int d x x E_{q}(x, 0,0)$ to that

$$
\left\langle\vec{J}_{q}\right\rangle=\vec{S} \int_{-1}^{1} d x x\left[H_{q}(x, \xi, 0)+E_{q}(x, \xi, 0)\right]
$$

- Ji relation $J_{q}=\int_{0}^{1} d x x[H(x, \xi, 0)+E(x, \xi, 0)]$ requires $\operatorname{GPDs}(x, \xi, 0)$ for (common) fixed ξ for all x
- transverse imaging requires GPDs for $\xi=0$
- $\mathcal{A}_{D V C S}(\xi, t) \longrightarrow \int_{-1}^{1} d x \frac{G P D^{(+)}(x, \xi, t)}{x-\xi+i \varepsilon}$
- ξ longitudinal momentum transfer on the target $\xi=\frac{p^{+\prime}-p^{+}}{p^{+\prime}+p^{+}}$
- x (average) momentum fraction of the active quark $x=\frac{k^{+\prime}+p^{+}}{p^{+\prime}+p^{+}}$
- $\Im \mathcal{A}_{D V C S}(\xi, t) \longrightarrow G P D^{(+)}(\xi, \xi, t)$
- only sensitive to 'diagonal' $x=\xi$
- limited ξ range, e.g. $-t=\frac{4 \xi^{2} M^{2}+\Delta^{2}}{1-\xi^{2}}$ implies $\xi>\xi_{\text {min }}$ for fixed t
- $\Re \mathcal{A}_{D V C S}(\xi, t) \longrightarrow \int_{-1}^{1} d x \frac{G P D^{(+)}(x, \xi, t)}{x-\xi}$ probes GPDs off the diagonal, but ...

$\mathcal{A}(\xi, t) \longleftrightarrow G P D^{(+)}(\xi, \xi, t), \Delta(t)$

- (Anikin, Teryaev, Diehl, Ivanov, Brodsky, Szczepaniak, ...): dispersion relation for DVCS amplitude

$$
\Re \mathcal{A}\left(\nu, t, Q^{2}\right)=\frac{\nu^{2}}{\pi} \int_{0}^{\infty} \frac{d \nu^{\prime 2}}{\nu^{\prime 2}} \frac{\Im \mathcal{A}\left(\nu^{\prime}, t, Q^{2}\right)}{\nu^{\prime 2}-\nu^{2}}+\Delta\left(t, Q^{2}\right)
$$

- In combination with LO factorization $\left(\mathcal{A}=\int_{-1}^{1} d x \frac{H\left(x, \xi, t, Q^{2}\right)}{x-\xi+i \varepsilon}\right)$

$$
\Re \mathcal{A}\left(\xi, t, Q^{2}\right)=\int_{-1}^{1} d x \frac{H\left(x, \xi, t, Q^{2}\right)}{x-\xi}=\int_{-1}^{1} d x \frac{H\left(x, x, t, Q^{2}\right)}{x-\xi}+\Delta\left(t, Q^{2}\right)
$$

- Earlier derived from polynomiality (Goeke,Polyakov,Vanderhaegheh)
\hookrightarrow 'Condense' information contained in $\mathcal{A}_{D V C S}\left(\right.$ fixed $\left.Q^{2}\right)$

$$
\mathcal{A}\left(\xi, t, Q^{2}\right) \leftrightarrow\left\{\begin{array}{c}
G P D\left(\xi, \xi, t, Q^{2}\right) \\
\Delta\left(t, Q^{2}\right)
\end{array}\right.
$$

$\mathcal{A}(\xi, t) \longleftrightarrow G P D(\xi, \xi, t), \Delta(t)$

- $\Re \mathcal{A}(\xi, t)=\int_{-1}^{1} d x \frac{H(x, \xi, t)}{x-\xi}$ probes GPDs for $x \neq \xi$, but new information can be 'projected back' onto diagonal plus D-term!
- remaining 'new' (not in $\Im \mathcal{A}$) info on GPDs after 'projecting back' onto diagonal:
- D-form factor
- constraints from $\int d x \frac{G P D(x, x, t)}{x-\xi}$ on $\operatorname{GPD}(\xi, \xi, t)$ in kinematically inaccessible range $\xi<\xi_{\min } \& \xi>\xi_{\max }$
- Information away from diagonal $(x=\xi): Q^{2}$ evolution: changes x distribution in a known way for fixed ξ

DVCS $\rightsquigarrow G P D(x, \xi, t)$ (a mathematical exercise)

$\operatorname{GPD}\left(x, \xi, t, Q^{2}\right)=\left(1-x^{2}\right) \sum_{n=0}^{\infty} C_{n}^{3 / 2}(x) \sum_{m=0(\text { even })}^{n} a_{n m}(\xi) \mathcal{C}_{n-m}\left(\xi, t, Q^{2}\right)$

- $C_{n}^{3 / 2}(x)$ Gegenbauer polynomials; $a_{n m}(\xi)$ known polynomial
- $\mathcal{C}_{k}\left(\xi, t, Q^{2}\right)$ unknown, but evolve with known power $\sim \gamma_{k}$ of $\alpha_{s}\left(Q^{2}\right)$
- consider $x=\xi$ (relabel: $k=n-m$)

$$
\begin{equation*}
G P D\left(\xi, \xi, t, Q^{2}\right)=\left(1-\xi^{2}\right) \sum_{k=0}^{\infty} \mathcal{C}_{k}\left(\xi, t, Q^{2}\right) f_{k}(\xi) \tag{1}
\end{equation*}
$$

with $f_{k}(\xi)=\sum_{m=0(\text { even })}^{\infty} a_{m+k, m}(\xi) C_{m+k}^{3 / 2}(\xi)$ known function.

- for fixed ξ, each term in (1) evolves with different γ_{k}
\hookrightarrow from Q^{2}-dependence of $G P D\left(\xi, \xi, t, Q^{2}\right)$ (fixed ξ and t) over 'wide' range of Q^{2}, in principle possible to determine $\mathcal{C}_{k}\left(\xi, t, Q^{2}\right)$
$\hookrightarrow G P D\left(x, \xi, t, Q^{2}\right)$ for $x \neq \xi$ model-independently!

DVCS $\rightsquigarrow G P D(x, \xi, t)$ (a mathematical exercise)

\hookrightarrow from Q^{2}-dependence of $\operatorname{GPD}\left(\xi, \xi, t, Q^{2}\right)$ (fixed ξ and t) over 'wide' range of Q^{2}, in principle possible to determine $\operatorname{GPD}\left(x, \xi, t, Q^{2}\right)$ for $x \neq \xi$ model-independently!

- issues:
- higher twist 'contamination'
- higher order evolution kernel
- limited coverage in Q^{2} (here, an EIC would be a giant leap!) and ξ
- singular shape of GPDs (cusp at $x=\xi$) requires many polynomials in Gegenbauer expansion
p polarized in $+\hat{x}$ direction (MB,2003)

$$
d\left(x, \mathbf{b}_{\perp}\right)
$$

- virtual photon 'sees' enhancement when quark currents point in direction opposite to photon momentum
\hookrightarrow sideways shift of quark distributions
- sign \& magnitude of shift (modelindependently) predicted to be related to the proton/neutron anomalous magnetic moment!

'Chromodynamik Lensing: GPD \longleftrightarrow SSA

- example: $\gamma^{*} p \rightarrow \pi X$

- u, d distributions in \perp polarized proton have left-right asymmetry in \perp position space (T-even!); sign "determined" by $\kappa_{u} \& \kappa_{d}$
- attractive FSI deflects active quark towards the center of momentum
\hookrightarrow FSI translates position space distortion (before the quark is knocked out) in $+\hat{y}$-direction into momentum asymmetry that favors $-\hat{y}$ direction
\hookrightarrow correlation between sign of κ_{q}^{p} and sign of SSA: $f_{1 T}^{\perp q} \sim-\kappa_{q}^{p}$
- $f_{1 T}^{\perp q} \sim-\kappa_{q}^{p}$ confirmed by Hermes data (also consistent with Compass deuteron data $f_{1 T}^{\perp u}+f_{1 T}^{\perp d} \approx 0$)

$f_{1 T}^{\perp}\left(x, \mathbf{k}_{\perp}\right)_{D Y}=-f_{1 T}^{\perp}\left(x, \mathbf{k}_{\perp}\right)_{S I D I S}$

a)

b)

- time reversal: $\mathrm{FSI} \leftrightarrow \mathrm{ISI}$

SIDIS: compare FSI for 'red' q that is being knocked out with ISI for an anti-red \bar{q} that is about to annihilate that bound q
\hookrightarrow FSI for knocked out q is attractive
DY: nucleon is color singlet \rightarrow when to-be-annihilated q is 'red', the spectators must be anti-red
\hookrightarrow ISI with spectators is repulsive

- test of this relation is a test of TMD factorization

Color Decoherence and Evolution of SSAs

- LO Evolution equations for SSAs known (Qiu \& Sterman + others), but evolution of Sivers function $f_{1 T}^{\perp}$ requires 'off-diagonal' quark-gluon correlations ($f_{1 T}^{\perp}$ related to 'diagonal' quark-gluon correlations
\hookrightarrow Measurement of $f_{1 T}^{\perp}$ at one Q^{2} not sufficient to predict $f_{1 T}^{\perp}$ at higher Q^{2} !
- What to expect?

Color Decoherence and Evolution of SSAs

- 'Chromodynamic lensing' mechanism for \perp SSA requires long range coherence of color field
- QCD-evolution destroys color coherence:
- consider 'red' quark

active quark 'dressed' with glue
\hookrightarrow attracted to 'anti-red' spectators
- after 'dressing' itself with a gluon, previously 'red' quark more likely to be 'blue' or 'green'
\hookrightarrow after dressing, attraction to 'far away' spectators mostly gone
- only attracted to very close by (at high Q^{2}) gluon from dressing
\hookrightarrow expect no \perp SSA from long-range color fields after dressing!!!
- at high Q^{2}, quarks at low x likely to have dressed themselves with perturbative gluon
\hookrightarrow fraction of quarks at low x /high Q^{2} that still 'sees' long range coherent color field significantly decreased
\hookrightarrow 'Chromodynamic lensing' mechanism for \perp SSA suppressed!

Quark-Gluon Correlations (Introduction)

- (longitudinally) polarized polarized DIS at leading twist \longrightarrow 'polarized quark distribution' $g_{1}^{q}(x)=q^{\uparrow}(x)+\bar{q}^{\uparrow}(x)-q_{\downarrow}(x)-\bar{q}_{\downarrow}(x)$
- $\frac{1}{Q^{2}}$-corrections to X -section involve 'higher-twist' distribution functions, such as $g_{2}(x)$

$$
\sigma_{L L} \propto g_{1}-\frac{2 M x}{\nu} g_{2}
$$

- $g_{2}(x)$ involves quark-gluon correlations and does not have a parton interpretation as difference between number densities
- for \perp polarized target, g_{1} and g_{2} contribute equally to $\sigma_{L T}$

$$
\sigma_{L T} \propto g_{T} \equiv g_{1}+g_{2}
$$

\hookrightarrow 'clean' separation between higher order corrections to leading twist $\left(g_{1}\right)$ and higher twist effects $\left(g_{2}\right)$

- what can one learn from g_{2} ?

Quark-Gluon Correlations (QCD analysis)

- $g_{2}(x)=g_{2}^{W W}(x)+\bar{g}_{2}(x)$, with $g_{2}^{W W}(x) \equiv-g_{1}(x)+\int_{x}^{1} \frac{d y}{y} g_{1}(y)$
- $\bar{g}_{2}(x)$ involves quark-gluon correlations, e.g.

$$
\int d x x^{2} \bar{g}_{2}(x)=\frac{1}{3} d_{2}=\frac{1}{6 M P^{+2} S^{x}}\langle P, S| \bar{q}(0) g G^{+y}(0) \gamma^{+} q(0)|P, S\rangle
$$

- $\sqrt{2} G^{+y} \equiv G^{0 y}+G^{z y}=-E^{y}+B^{x}$
- sometimes called color-electric and magnetic polarizabilities $2 M^{2} \vec{S} \chi_{E}=\langle P, S| \vec{j}_{a} \times \vec{E}_{a}|P, S\rangle \& 2 M^{2} \vec{S} \chi_{B}=\langle P, S| j_{a}^{0} \vec{B}_{a}|P, S\rangle$ with $d_{2}=\frac{1}{4}\left(\chi_{E}+2 \chi_{M}\right)$ - but these names are misleading!

Quark-Gluon Correlations (Interpretation)

- $\bar{g}_{2}(x)$ involves quark-gluon correlations, e.g.

$$
\int d x x^{2} \bar{g}_{2}(x)=\frac{1}{3} d_{2}=\frac{1}{6 M P^{+2} S^{x}}\langle P, S| \bar{q}(0) g G^{+y}(0) \gamma^{+} q(0)|P, S\rangle
$$

- QED: $\bar{q}(0) e F^{+y}(0) \gamma^{+} q(0)$ correlator between quark density $\bar{q} \gamma^{+} q$ and (\hat{y}-component of the) Lorentz-force
$F^{y}=e[\vec{E}+\vec{v} \times \vec{B}]^{y}=e\left(E^{y}-B^{x}\right)=-e\left(F^{0 y}+F^{z y}\right)=-e \sqrt{2} F^{+y}$.
for charged paricle moving with $\vec{v}=(0,0,-1)$ in the $-\hat{z}$ direction
\hookrightarrow matrix element of $\bar{q}(0) e F^{+y}(0) \gamma^{+} q(0)$ yields γ^{+}density (density relevant for DIS in Bj limit!) weighted with the Lorentz force that a charged particle with $\vec{v}=(0,0,-1)$ would experience at that point
$\hookrightarrow d_{2}$ a measure for the color Lorentz force acting on the struck quark in SIDIS in the instant after being hit by the virtual photon

$$
\left\langle F^{y}(0)\right\rangle=-2 M^{2} d_{2} \quad\left(\text { rest frame } ; S^{x}=1\right)
$$

Quark-Gluon Correlations (Interpretation)

- x^{2}-moment of twist-4 polarized PDF $g_{3}(x)$

$$
\int d x x^{2} g_{3}(x) \rightsquigarrow\langle P, S| \bar{q}(0) g \tilde{G}^{\mu \nu}(0) \gamma_{\nu} q(0)|P, S\rangle \sim f_{2}
$$

\hookrightarrow different linear combination $f_{2}=\chi_{E}-\chi_{B}$ of χ_{E} and χ_{M}
\hookrightarrow combine with $d_{2} \Rightarrow$ disentangle electric and magnetic force

- What should one expect (sign/magnitude)?
- $\kappa_{q}^{p} \longrightarrow$ signs of deformation (u / d quarks in $\pm \hat{y}$ direction for proton polarized in $+\hat{x}$ direction \longrightarrow expect force in $\mp \hat{y}$
$\hookrightarrow d_{2}$ positive/negative for u / d quarks in proton
- large $N_{C}: d_{2}^{u / p}=-d_{2}^{d / p} \quad$ (consistent with $\left.f_{1 T}^{\perp u}+f_{1 T}^{\perp d} \approx 0\right)$
- $F^{y}=-2 M^{2} d_{2}=-10 \frac{\mathrm{GeV}}{f m} d_{2} \quad \Rightarrow$ expect $\left|d_{2}\right| \ll 1$
- lattice (Göckeler et al., 2005): $d_{2}^{u} \approx 0.010$ and $d_{2}^{d} \approx-0.0056$
$\hookrightarrow\left\langle F_{u}^{y}(0)\right\rangle \approx-100 \frac{\mathrm{MeV}}{f m} \quad\left\langle F_{d}^{y}(0)\right\rangle \approx 56 \frac{\mathrm{MeV}}{f m}$
- x^{2}-moment of chirally odd twist-3 PDF $e(x) \longrightarrow$ transverse force on transversely polarized quark in unpolarized target (\leftrightarrow Boer-Mulders h_{1}^{\perp})

Summary

- GPDs $\stackrel{F T}{\longleftrightarrow}$ IPDs (impact parameter dependent PDFs)
- $E^{q}\left(x, 0,-\Delta_{\perp}^{2}\right) \leftrightarrow \kappa_{q / p}$ (contribution from quark flavor q to anom magnetic moment)
- $E^{q}\left(x, 0,-\Delta_{\perp}^{2}\right) \longrightarrow$
- GPDs for $x \neq \xi$ from Q^{2} evolution \perp deformation of PDFs for \perp polarized target
- $\quad \perp$ deformation \leftrightarrow (sign of) SSA (Sivers; Boer-Mulders)
- Q^{2} evolution \longrightarrow Color decoherence
- \perp deformation \leftrightarrow (sign of) quark-gluon correlations ($\int d x x^{2} \bar{g}_{2}(x)$, $\left.\int d x x^{2} \bar{e}(x)\right)$

