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Fragmentation functions

Represent the probability that a parton hadronizes

 Describe the collinear transition of a parton i into a 
massless hadron h carrying momentum fraction z 

i
D

h

 Relevant any time a hadron is produced in high energy collisions 

 Time-like version of PDFs : information on structure of the nucleon
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Why care about hadrons?

• Hadrons : dominant final state in pp and ep collisions

• Heavy Ion Collisions : QGP by suppression in hadron-production

• The flavor-separation of polarized parton distributions depends 
crucially on SIDIS results (Hermes-SMC-Compass)

• Extraction of polarized gluon density depends much on 
     PHENIX and STAR pion data

wrong                           wrong

• Look into “unconventional targets” : Lambda polarized fragmentation functions

• Fundamental role in understanding single spin asymmetries, transversity...

• Key elements for Target Fragmentation: evolution of fracture functions

• TH challenge: NLO pQCD fails to describe fixed target experiments!

Different FFs            very different results for spin dependent distributions

Df ∆fDdeF, Navarro, Sassot (2005)
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Some properties of 

• Non-perturbative objects but universal : can be obtained from global analysis!

•Depend on energy fraction z =
Eh

Ei

• Depend on factorization scale       : described by AP equations

d

d lnµ2
Dh

q (z, µ2) =
�
Pqq ⊗Dh

q + PgqD
h
g

�
(z, µ2)

µ2

Kernels very singular at small z :negative FFs ! Pgg →
2CA

z
− αs

2π

4C2
A

z
ln2 z

Dh
i (z, µ2)

NLO 
partial NNLO: Moch, Vogt

• Anyway, mass and higher twist effects not trivial : no systematic treatment

Limits use to z > 0.05 / 0.1

�

h

� 1

0
z Dh

i (z, µ2) dz = 1•Energy- Momentum conservation sum rule

without much practical use

4



Fragmentation Functions 

How to obtain them?

Global Analysis : look at different observables

e+e-  SIDIS  pp
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e+e-  (SIA) single-inclusive annihilation

densities. For instance, the singlet evolution equation
schematically reads

d

d ln Q2
!DH(z, Q2) =

[
P̂ (T ) ⊗ !DH

]
(z, Q2), (2)

where

!DH ≡
(

DH
Σ

DH
g

)
, DH

Σ ≡
∑

q

(DH
q + DH

q̄ ) (3)

and

P̂ (T ) ≡
(

P (T )
qq 2nfP (T )

gq

1
2nf

P (T )
qg P (T )

gg

)
. (4)

is the matrix of the singlet timelike evolution kernels.
The NLO splitting functions P (T )

ij have been computed
in [26, 27] or can be related to the corresponding spacelike
kernels by proper analytic continuation [28].

The range of applicability for fragmentation functions
as defined above is severely limited to medium-to-large
values of z. On the one hand, the timelike evolution ker-
nels in (4) develop a strong singular behavior as z → 0,
and, on the other hand, the produced hadrons are con-
sidered to be massless. More specifically, the splitting
functions P (T )

gq (z) and P (T )
gg (z) have a dominant, large

logarithmic piece $ ln2 z/z in their NLO part, which
ultimately leads to negative fragmentation functions for
z % 1 in the course of the Q2 evolution and, perhaps, to
unphysical, negative cross sections, even if the evolution
starts with positive distributions at some scale Q0 < Q.
At small z, also finite mass corrections proportional to
MH/(sz2) become more and more important. While
there are ways to resum the singular small-z behavior
to all orders in αs, there is no systematic or unique way
to correct for finite hadron masses, for instance by intro-
ducing some “re-scaled” variable z′ in SIA. Inseparably
entwined with mass effects are other power corrections
or “dynamical higher twists”.

Anyway, including small-z resummations or mass cor-
rections in one way or the other in the analysis of hadron
production rates is not compatible with the factoriza-
tion theorem and the definition of fragmentation func-
tions outlined above. “Resummed” or “mass corrected”
fragmentation functions should not be used with fixed or-
der expressions for, say, the semi-inclusive deep-inelastic
production of a hadron, eN → e′HX , discussed in
Sec. II C. Therefore we limit ourselves in our global
analysis to kinematical regions where mass corrections
and the influence of the singular small-z behavior of the
evolution kernels is negligible. It turns out that a cut
z > zmin = 0.05 (0.1) is sufficient for data on pion (kaon)
production.

Finally, conservation of the momentum of the frag-
menting parton f in the hadronization process is sum-
marized by a sum rule stating that

∑

H

∫ 1

0
dzzDH

i (z, Q2) = 1, (5)

i.e., each parton will fragment with 100% probability into
some hadron H . Equation (5) is compatible with the evo-
lution kernels in the MS scheme, although not for each
individual contribution

∫ 1
0 dzzDH

i (z, Q2). Of course, the
sum rule (5) should be dominated, perhaps almost sat-
urated, by the fragmentation into the lightest hadrons
such as pions and kaons. The unstable small-z behav-
ior, however, prevents Eq. (5) from being a viable con-
straint in a global analysis. Only truncated moments∫ 1

zmin
dzzDH

i (z, Q2) are meaningful.

B. Single-inclusive e+e− Annihilation

The cross sections for the single-inclusive e+e− anni-
hilation (SIA) into a specific hadron H ,

e+e− → (γ, Z) → H, (6)

at a center-of-mass system (c.m.s.) energy
√

s and in-
tegrated over the production angle can be written as
[29, 30]

1
σtot

dσH

dz
=

σ0∑
q ê2

q

[
2 FH

1 (z, Q2) + FH
L (z, Q2)

]
. (7)

The energy EH of the observed hadron scaled to the beam
energy Q/2 =

√
s/2 is denoted by z ≡ 2pH · q/Q2 =

2EH/
√

s with Q being the momentum of the intermedi-
ate γ or Z boson.

σtot =
∑

q

ê2
q σ0

[
1 +

αs(Q2)
π

]
(8)

is the total cross section for e+e− → hadrons including
its NLO O(αs) correction and σ0 = 4πα2(Q2)/s. The
sums in (7) and (8) run over the nf active quark flavors q,
and the êq are the corresponding appropriate electroweak
charges (see App. A of Ref. [24] for details).

To NLO accuracy, the unpolarized “time-like” struc-
ture functions FH

1 and FH
L in (7) are given by

2FH
1 (z, Q2) =

∑

q

ê2
q

{
[
DH

q (z, Q2) + DH
q̄ (z, Q2)

]

+
αs(Q2)

2π

[
C1

q ⊗ (DH
q + DH

q̄ )

+C1
g ⊗ DH

g

]
(z, Q2)

}
, (9)

FH
L (z, Q2) =

αs(Q2)
2π

∑

q

ê2
q

[
CL

q ⊗ (DH
q + DH

q̄ )

+CL
g ⊗ DH

g

]
(z, Q2), (10)

with ⊗ denoting a standard convolution. The relevant
NLO coefficient functions C1,L

q,g in the MS scheme can be
found in App. A of Ref. [24].
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B. Single-inclusive e+e− Annihilation

The cross sections for the single-inclusive e+e− anni-
hilation (SIA) into a specific hadron H ,

e+e− → (γ, Z) → H, (6)

at a center-of-mass system (c.m.s.) energy
√

s and in-
tegrated over the production angle can be written as
[29, 30]

1
σtot

dσH

dz
=

σ0∑
q ê2

q

[
2 FH

1 (z, Q2) + FH
L (z, Q2)

]
. (7)

The energy EH of the observed hadron scaled to the beam
energy Q/2 =

√
s/2 is denoted by z ≡ 2pH · q/Q2 =

2EH/
√

s with Q being the momentum of the intermedi-
ate γ or Z boson.

σtot =
∑

q

ê2
q σ0

[
1 +

αs(Q2)
π

]
(8)

is the total cross section for e+e− → hadrons including
its NLO O(αs) correction and σ0 = 4πα2(Q2)/s. The
sums in (7) and (8) run over the nf active quark flavors q,
and the êq are the corresponding appropriate electroweak
charges (see App. A of Ref. [24] for details).

To NLO accuracy, the unpolarized “time-like” struc-
ture functions FH

1 and FH
L in (7) are given by

2FH
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ê2
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+
αs(Q2)

2π

[
C1

q ⊗ (DH
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q + DH

q̄ )
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g ⊗ DH
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(z, Q2), (10)

with ⊗ denoting a standard convolution. The relevant
NLO coefficient functions C1,L

q,g in the MS scheme can be
found in App. A of Ref. [24].

densities. For instance, the singlet evolution equation
schematically reads

d

d ln Q2
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where
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is the matrix of the singlet timelike evolution kernels.
The NLO splitting functions P (T )

ij have been computed
in [26, 27] or can be related to the corresponding spacelike
kernels by proper analytic continuation [28].

The range of applicability for fragmentation functions
as defined above is severely limited to medium-to-large
values of z. On the one hand, the timelike evolution ker-
nels in (4) develop a strong singular behavior as z → 0,
and, on the other hand, the produced hadrons are con-
sidered to be massless. More specifically, the splitting
functions P (T )

gq (z) and P (T )
gg (z) have a dominant, large

logarithmic piece $ ln2 z/z in their NLO part, which
ultimately leads to negative fragmentation functions for
z % 1 in the course of the Q2 evolution and, perhaps, to
unphysical, negative cross sections, even if the evolution
starts with positive distributions at some scale Q0 < Q.
At small z, also finite mass corrections proportional to
MH/(sz2) become more and more important. While
there are ways to resum the singular small-z behavior
to all orders in αs, there is no systematic or unique way
to correct for finite hadron masses, for instance by intro-
ducing some “re-scaled” variable z′ in SIA. Inseparably
entwined with mass effects are other power corrections
or “dynamical higher twists”.

Anyway, including small-z resummations or mass cor-
rections in one way or the other in the analysis of hadron
production rates is not compatible with the factoriza-
tion theorem and the definition of fragmentation func-
tions outlined above. “Resummed” or “mass corrected”
fragmentation functions should not be used with fixed or-
der expressions for, say, the semi-inclusive deep-inelastic
production of a hadron, eN → e′HX , discussed in
Sec. II C. Therefore we limit ourselves in our global
analysis to kinematical regions where mass corrections
and the influence of the singular small-z behavior of the
evolution kernels is negligible. It turns out that a cut
z > zmin = 0.05 (0.1) is sufficient for data on pion (kaon)
production.

Finally, conservation of the momentum of the frag-
menting parton f in the hadronization process is sum-
marized by a sum rule stating that
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i (z, Q2) = 1, (5)

i.e., each parton will fragment with 100% probability into
some hadron H . Equation (5) is compatible with the evo-
lution kernels in the MS scheme, although not for each
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its NLO O(αs) correction and σ0 = 4πα2(Q2)/s. The
sums in (7) and (8) run over the nf active quark flavors q,
and the êq are the corresponding appropriate electroweak
charges (see App. A of Ref. [24] for details).
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with ⊗ denoting a standard convolution. The relevant
NLO coefficient functions C1,L

q,g in the MS scheme can be
found in App. A of Ref. [24].
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marized by a sum rule stating that
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hilation (SIA) into a specific hadron H ,

e+e− → (γ, Z) → H, (6)

at a center-of-mass system (c.m.s.) energy
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s and in-
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1 +
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]
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is the total cross section for e+e− → hadrons including
its NLO O(αs) correction and σ0 = 4πα2(Q2)/s. The
sums in (7) and (8) run over the nf active quark flavors q,
and the êq are the corresponding appropriate electroweak
charges (see App. A of Ref. [24] for details).

To NLO accuracy, the unpolarized “time-like” struc-
ture functions FH
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L in (7) are given by
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Advantages  Very precise data from LEP/SLD

 Heavy quark tagged data

 Only fragmentation functions enter (clean process)

๏SIA data dominated by precise LEP/SLD measurements at MZ

๏weak scale dependence (bad resolution for g fragmentation)

๏mostly determine “singlet” distribution (high precision)

๏OPAL offers “flavor separated data”: no trivial interpretation at NLO

๏not precise at large z (relevant for pp collisions)

๏ 

Σ = Du + Dū + Dd + Dd̄ + Ds + Ds̄ + Dc + Dc̄ + Db + Db̄

Disadvantages

Dh
q (z,Q2) from Dh

q (z,Q2)Can not separate

e+e-  (SIA) single-inclusive annihilation
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SIDIS

at LO

• Distributions in x and z

We note that the longitudinal structure function FL

in Eq.(10) receives its leading nonzero (finite and scheme
independent) contribution at O(αs). We treat, however,
the O(αs) expressions in (10) as sub-leading (=NLO)
in calculations of the total (longitudinal plus transverse)
cross section (7). For predictions of only the longitu-
dinal cross section at NLO, the O(α2

s) corrections [26]
should be included. However, such measurements are
not available for identified pions or kaons considered in
this analysis.

C. Semi-Inclusive Deep-Inelastic Scattering

The cross section for the semi-inclusive deep-inelastic
production of a hadron, eN → e′HX , is proportional to
certain combinations of both the parton distributions of
the nucleon N and the fragmentation functions for the
hadron H . It can be written in factorized form in a way
very similar to the fully inclusive DIS case [24, 29–31]:

dσH

dx dy dzH
=

2 πα2

Q2

[
(1 + (1 − y)2)

y
2 FH

1 (x, zH , Q2)

+
2(1 − y)

y
FH

L (x, zH , Q2)
]

, (11)

with x and y denoting the usual DIS scaling variables
(Q2 = sxy), and where [29, 30] zH ≡ pH · pN/pN · q
with an obvious notation of the four-momenta, and with
−q2 ≡ Q2. Strictly speaking, Eq. (11) and the vari-
able zH only apply to hadron production in the current
fragmentation region. This is usually ensured by a cut
xF > 0 on the Feynman-variable representing the frac-
tional longitudinal c.m.s. momentum. If necessary, target
fragmentation could be accounted for by transforming to
the variable [31, 32] zH → z ≡ EH

EN (1−x) , the energies EH ,
EN defined in the c.m.s. frame of the nucleon and the vir-
tual photon, and by introducing the so-called “fracture
functions” [32].

The structure functions FH
1 and FH

L in (11) are given
at NLO by

2FH
1 (x, zH , Q2) =

∑

q,q

e2
q

{
q(x, Q2)DH

q (zH , Q2)

+
αs(Q2)

2π

[
q ⊗ C1

qq ⊗ DH
q

+q ⊗ C1
gq ⊗ DH

g

+g ⊗ C1
qg ⊗ DH

q

]
(x, zH , Q2)

}
,(12)

FH
L (x, zH , Q2) =

αs(Q2)
2π

∑

q,q

e2
q

[
q ⊗ CL

qq ⊗ DH
q

+q ⊗ CL
gq ⊗ DH

g

+g ⊗ CL
qg ⊗ DH

q

]
(x, zH , Q2), (13)

with the NLO (MS) coefficient functions C1,L
ij [24, 29–31].

In our global analysis of fragmentation functions we
will make use of (preliminary) data for charged pion and
charged kaon multiplicities taken by the HERMES exper-
iment [18]. The multiplicities (1/NDIS)dNH/dzdQ2 are
defined as the ratio of the semi-inclusive deep-inelastic
scattering (SIDIS) cross section (11) in a certain bin of,
say, Q2 and z, to the totally inclusive DIS rate. The par-
ticular value of this data in the global analysis emerges
from the sensitivity to individual quark and anti-quark
flavors in the fragmentation process which is not accessi-
ble from e+e− annihilation.

D. Hadron-Hadron Collisions

The single-inclusive production of a hadron H at high
transverse momentum pT in hadron-hadron collisions is
also amenable to QCD perturbation theory. Up to correc-
tions suppressed by inverse powers of pT , the differential
cross section can be written in factorized form as [25, 33]

EH
d3σ

dp3
H

=
∑

a,b,c

fa ⊗ fb ⊗ dσ̂c
ab ⊗ DH

c , (14)

where the sum is over all contributing partonic channels
a + b → c + X , with dσ̂c

ab the associated partonic cross
section. dσ̂c

ab can be expanded as a power series in the
strong coupling αs and the O(α3

s) NLO corrections are
available [25, 33]. As always, the factorized structure (14)
forces one to introduce into the calculation scales of the
order of the hard scale in the reaction – but not specified
further by the theory – that separate the short- and long-
distance contributions. We have suppressed the explicit
dependence on these renormalization and factorization
scales in Eq. (14), for details, see, e.g., Ref. [25].

In studies and quantitative analyzes of hadronic cross
sections, NLO corrections are of particular importance
and generally indispensable in order to arrive at a firm
theoretical prediction for (14). Since NLO corrections
are known to be significant, LO approximations usually
significantly undershoot the available data. In addition,
hadronic reactions suffer from much enhanced theoretical
uncertainties than the reactions described above due to
the presence of more non-perturbative, scale dependent
functions. The dependence on the unphysical factoriza-
tion and renormalization scales can be only controlled
and quantified at NLO (or beyond).

As will be discussed below, the special value of
hadronic cross sections in a global analysis of fragmenta-
tion functions is their enhanced sensitivity to the gluon
fragmentation function through the dominance of gg →
gX processes for hadrons produced at low-to-medium
transverse momenta and their sensitivity to fragmenta-
tion at very high z. Charge separated data for H = π±

and K± provide additional information on the flavor sep-
aration of the DH

i .

“effective charge” : different for quarks and antiquarks!
Most valuable observable for flavor/charge separation!

Different targets (and x!) can be used

}

e
e

γ
q

p
Xq

D

h

current fragmentation

expression known up to NLO 

zH ≡ PH · PN

PN · q“scaling variable”

x =
Q2

2PN · q y =
Q2

sx

dσH

dx dQ2 dzH
=

2πα2

xsQ2

�
1 + (1− y)2

y
2FH
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Figure 6.12
Acceptance correction factors with (full circles) and without (empty squares) accounting for
the scattered lepton detection efficiency. Only taking hadron ratios results in systematically
lower (higher) correction factors for small (large) xB. Shown are the first and last of the four
z bins.
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Figure 6.13
The pion multiplicities vs. Q2 in 4 z bins using a proton (filled symbols) and a deuterium
target (open symbols).
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Fig. 1. Comparison of normalised differential 
scaled energy distributions for charged hadrons 
in bins of x, Q2 and z. The dotted lines 
represent linear fits in In Q2 inspired by QCD. 
The errors shown are statistical only 

given in Tables 16a, b in the Appendix. At large values 
of p~ a tail is observed, which clearly increases with W 2, 
as expected from QCD. The dotted lines are fits to the 

1 
 9 d41~oc 1/(m 2 +p~) ' ,  inspired by data using the ansatz Nuu ap, 

a propagator  form. The mass term m obtained from the 
fits is in the range 0.6-1.6 GeV (excluding the very low 
z and W 2 bin), the power e is in the range 1.4~2.6, with 
a central value close to two. Thus the fall off of the 
measured cross section at large p2 (p2 ~ m  2) indicates 
the power law behaviour o c l / p  4, as expected from 
Q C D .  

Further, the measured mean squared transverse mo- 
mentum (p~)  for charged hadrons was analysed. Fig- 
ure 4 shows the W 2 dependence of (p{)  in z and Q2 
bins (Table 17). A linear increase of (p2)  with In W z 
is seen for all z, Q2 bins, and this is more pronounced 

in the high z region. The lines represent linear fits in 
In W 2 to the data. 

To investigate a possible Q2 dependence, such as that 
observed for the z distributions at fixed W 2 [25], we 
plot in Fig. 5 the fitted (p2)  in each z bins for a central 
W 2 value of 200 GeV 2. The data for Q2 > 5 GeV 2 show 
no Q2 dependence. Only for the lowest Q2 bin (2 GeV 2 
< Q2< 5 GeV 2) the average pt 2 is slightly smaller, which 
is presumably due to the contribution of elastic and qua- 
si-elastic events 9 Because x ~ (WZ/Q  2 + 1)- 1, this implies 
no significant x dependence, except for very small x. This 
confirms, with increased precision, the conclusions of 
earlier EMC experiments [27, 28] that W 2 and z are 
the relevant variables for the p2 behaviour. 

In Fig. 6 the W 2 dependence of (p~)  (see also Ta- 
ble 18) are compared to those from other experiments. 
Here the high precision of our data can be seen. They 
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scaled energy distributions for charged hadrons 
in bins of x, Q2 and z. The dotted lines 
represent linear fits in In Q2 inspired by QCD. 
The errors shown are statistical only 
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of p~ a tail is observed, which clearly increases with W 2, 
as expected from QCD. The dotted lines are fits to the 
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a propagator  form. The mass term m obtained from the 
fits is in the range 0.6-1.6 GeV (excluding the very low 
z and W 2 bin), the power e is in the range 1.4~2.6, with 
a central value close to two. Thus the fall off of the 
measured cross section at large p2 (p2 ~ m  2) indicates 
the power law behaviour o c l / p  4, as expected from 
Q C D .  

Further, the measured mean squared transverse mo- 
mentum (p~)  for charged hadrons was analysed. Fig- 
ure 4 shows the W 2 dependence of (p{)  in z and Q2 
bins (Table 17). A linear increase of (p2)  with In W z 
is seen for all z, Q2 bins, and this is more pronounced 

in the high z region. The lines represent linear fits in 
In W 2 to the data. 

To investigate a possible Q2 dependence, such as that 
observed for the z distributions at fixed W 2 [25], we 
plot in Fig. 5 the fitted (p2)  in each z bins for a central 
W 2 value of 200 GeV 2. The data for Q2 > 5 GeV 2 show 
no Q2 dependence. Only for the lowest Q2 bin (2 GeV 2 
< Q2< 5 GeV 2) the average pt 2 is slightly smaller, which 
is presumably due to the contribution of elastic and qua- 
si-elastic events 9 Because x ~ (WZ /Q  2 + 1)- 1, this implies 
no significant x dependence, except for very small x. This 
confirms, with increased precision, the conclusions of 
earlier EMC experiments [27, 28] that W 2 and z are 
the relevant variables for the p2 behaviour. 

In Fig. 6 the W 2 dependence of (p~)  (see also Ta- 
ble 18) are compared to those from other experiments. 
Here the high precision of our data can be seen. They 
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EMC (h) Hermes

• photoproduction (involves photon pdfs)
• transverse momentum distributions (HERA, EXP+TH uncertainties)

Other possible observables in DIS:  

} check

SIDIS

• charged separated data for π+, π−,K+,K−

h+, h−

Hermes (yet preliminary)

EMC

9



Advantages : 
                    

Disadvantages :

 allows flavor/charge separation
 larger z
 smaller Q2, improves scale coverage in evolution : Dg                       
 relevant for Hermes and Compass kinematics (spin physics)
 almost no HQ fragmentation

 introduce “dependence” on pdfs (but unpolarized pdfs well  
                      constrained from DIS in the same kinematical range, s?)

 non-perturbative corrections at small Q2?
 almost no HQ fragmentation

SIDIS
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Hadron-Hadron collisions

Transverse momentum distribution 
hard scale
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Hadron-Hadron collisions

Advantages :    allows (very little) flavor/charge separation (gluon dominated) 
                     several subprocesses 
                     much larger z
                     large (direct!) contribution from Dg

                     relevant for RHIC kinematics (polarized/heavy ion)
                     almost no HQ fragmentation

Transverse momentum distribution 
hard scale
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Hadron-Hadron collisions

Advantages :    allows (very little) flavor/charge separation (gluon dominated) 
                     several subprocesses 
                     much larger z
                     large (direct!) contribution from Dg

                     relevant for RHIC kinematics (polarized/heavy ion)
                     almost no HQ fragmentation

Transverse momentum distribution 

Disadvantages:  problems for fixed target experiments, use only colliders
                      otherwise Threshold resummation needed (not in first approach)
                      larger TH uncertainty (scale dependence)
                      larger dependence on pdfs
                      almost no HQ fragmentation

hard scale

DdeF,  W.Vogelsang
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BKK(1995), KKP(2000),  AKK(2005,2008)*

KRE(2000)**

HKNS(2007)

NLO analyses for light hadrons

CGGRW(1994), BFGW(2000)

use only SIA: no charge separation or ad-hoc assumption  

* AKK2008 includes pp data (with some charge separation)

Dh+

q (z,Q2) = (1− z) Dh+

q (z,Q2)

Bourhis et al (2001)

Albino, Kniehl, Kramer (1995-2008)

Kretzer (2000)

Hirai, Kumano, Nagai, Sudoh (2007)
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BKK(1995), KKP(2000),  AKK(2005,2008)*

KRE(2000)**

HKNS(2007)

NLO analyses for light hadrons

CGGRW(1994), BFGW(2000)

use only SIA: no charge separation or ad-hoc assumption  

* AKK2008 includes pp data (with some charge separation)

Dh+

q (z,Q2) = (1− z) Dh+

q (z,Q2)

First global analysis of fragmentation functions : DSS (2007)
DdeF, R.Sassot, M.Stratmann

Bourhis et al (2001)

Albino, Kniehl, Kramer (1995-2008)

Kretzer (2000)

Hirai, Kumano, Nagai, Sudoh (2007)
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Global FIT

Advantage :    Constrain FF with almost all available data
                     Check of pQCD framework
                     Each experiment spans a different kinematical range
                     Precise determination of distributions and first estimation of
                     uncertainties 
                     No need for naive relations between observables and FF’s

Disadvantage : more work required ! 
                     Feasible if Mellin technique used 
                     Tension between different observables requires careful analysis

•Complicated observables: • without simple NLO interpretation
• involving MC
• “averaged” bins 
• large scale dependence
• Weights

13



DSS global analysis 

π+,π−,π0,K+,K−,K0,K
0
, p, p, n, n, h+, h−fragmentation functions for

LO and NLO global fits available

SIA data includes: TPC, TASSO, SLD, ALEPH, DELPHI, OPAL + “flavor” tag

SIDIS data from : HERMES, EMC(h)

pp data from : PHENIX, STAR, BRAHMS, CDF, UA1, UA2

residual

Estimation of uncertainties using Lagrange multipliers

h+ = π+ + K+ + p + res+

D.deF, M. Stratmann, R. Sassot

pT > 1GeV (η)
cut

Q > 1 GeV

colliders

14



Technical details

DH

i
(z,Q2

0) = Ni zαi(1− z)βi
�
1 + γi(1− z)δi

�

Q2
0 = 1GeV2 u, d, s, g

Q2
0 = m2

Q c, b

αs andΛQCD from MRST

• Flexible parametrization

at initial scale

with

• Try to avoid Isospin symmetry assumptions 

III. OUTLINE OF THE ANALYSIS

In this Section, we outline the details of our analysis.
More specifically, we discuss our choice of parametriza-
tion, the selection of data sets, treatment of experimental
normalization uncertainties, and how we determine the
parameters by means of a global χ2 minimization. We
also briefly sketch how we make use of Mellin moments
to include exact NLO expressions for the cross sections
(7), (11), and (14) in our analysis and how we assess un-
certainties in the extraction of fragmentation functions
with the help of the Lagrange multiplier technique.

A. Parametrization

All recent analyses of fragmentation functions are
based exclusively on SIA data [7–10] and have cho-
sen the most simple functional form Nizαi(1 − z)βi to
parametrize the DH

i at some initial scale µ0 for the Q2-
evolution (2). The structure of the SIA cross section
(7)-(10) allows to extract only information on Dπ++π−

q+q̄
from data (similarly for kaons). Without assumptions it
is impossible to distinguish “favored” or “valence” from
“unfavored” or “sea” fragmentation, for instance, Dπ+

u

from Dπ+

ū where |π+〉 = |ud̄〉. This is a serious limitation
of all present analyses [7–10], as the obtained fragmenta-
tion functions cannot be used to compare to a wealth of
recent data on the production of charged pions and kaons
in SIDIS [18] or proton-proton collisions [21]. In Ref. [7]
a linear suppression factor Dπ+

ū /Dπ+

u = (1 − z) was as-
sumed to break this “deadlock”. This was later shown to
be in fair agreement with charged pion multiplicities in
SIDIS from HERMES [18] within a LO combined analysis
of SIA and SIDIS data [34]; see also Fig. 4 and discussions
below.

In our global analysis we will determine for the first
time individual fragmentation functions for quark and
anti-quarks for all flavors as well as gluons from data.
To accommodate also the experimental information from
lepton-nucleon and hadron-hadron scattering data, we
adopt a somewhat more flexible input distribution than
in [7–10]

DH
i (z, µ0) =

Nizαi(1 − z)βi[1 + γi(1 − z)δi ]
B[2 + αi, βi + 1] + γiB[2 + αi, βi + δi + 1]

,

(15)
where B[a, b] represents the Euler Beta-function and Ni

is normalized such to represent the contribution of DH
i to

the sum rule (5). A more restrictive initial parametriza-
tion with γi = 0 in Eq. (15) would introduce artifi-
cial correlations between the behavior of fragmentation
functions in different regions of z obscuring also the as-
sessment of uncertainties. We find that the extra term
∼ (1− z)δi in Eq. (15) considerably improves the quality
of the global fit, closely related to the fact that the anal-
ysis of fragmentation functions is restricted to medium-

to-large z. Accordingly, additional power terms in z, em-
phasizing the small z region, have little or no impact on
the fit and are not pursued further. The initial scale µ0

for the Q2-evolution is taken to be µ0 = 1 GeV in our
analysis.

Since the initial fragmentation functions (15) at scale
µ0 should not involve more free parameters than can be
extracted from data, we have to impose, however, cer-
tain relations upon the individual fragmentation func-
tions for pions and kaons. We have checked in each case
that relaxing these assumptions indeed does not signif-
icantly improve the χ2 of the fit of presently available
data to warrant any additional parameters. In detail, for
{u, ū, d, d̄} → π+ we impose isospin symmetry for the
sea fragmentation functions, i.e.,

Dπ+

ū = Dπ+

d , (16)

but we allow for slightly different normalizations in the
q + q̄ sum:

Dπ+

d+d̄ = NDπ+

u+ū. (17)

For strange quarks it is assumed that

Dπ+

s = Dπ+

s̄ = N ′Dπ+

ū (18)

with N ′ independent of z.
It is worth noticing that assuming N = N ′ = 1 [7, 10]

in Eqs. (17) and (18), respectively, SIA data alone allow
to distinguish between favored and unfavored fragmenta-
tion functions in principle. We shall scrutinize the com-
patibility of these assumptions with SIDIS and hadronic
scattering data in Sec. IVF. At any rate, their impact
on the assessment of uncertainties of fragmentation func-
tions is highly non trivial.

For charged kaons we fit DK+

u+ū and DK+

s+s̄ independently
to account for the phenomenological expectation that the
formation of secondary ss̄ pairs, which is required to form
a |K+〉 = |us̄〉 from a u but not from an s̄ quark, should
be suppressed. Indeed, we find from our fit, see Sec.
IV below, that DK+

s+s̄ > DK+

u+ū in line with that expec-
tation. For the unfavored fragmentation the data are
unable to discriminate between flavors and, consequently,
we assume that all distributions have the same functional
form:

DK+

ū = DK+

s = DK+

d = DK+

d̄ . (19)

We adopt the functional form (15) also for the fragmen-
tation of heavy charm and bottom quarks into charged
pions and kaons but setting γi = 0. As in [7–10] we as-
sume that DH

c = DH
c̄ and DH

b = DH
b̄

for H = π+, K+.
Heavy flavors are included discontinuously as massless
partons in the evolution (2) above their MS “thresholds”,
Q = mc,b, with mc,b denoting the mass of the charm and
bottom quark, respectively. This treatment of heavy fla-
vors is very much at variance with heavy quark parton
densities, where very elaborate schemes have been devel-
oped to properly include mass effects near threshold and
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bottom quark, respectively. This treatment of heavy fla-
vors is very much at variance with heavy quark parton
densities, where very elaborate schemes have been devel-
oped to properly include mass effects near threshold and

III. OUTLINE OF THE ANALYSIS

In this Section, we outline the details of our analysis.
More specifically, we discuss our choice of parametriza-
tion, the selection of data sets, treatment of experimental
normalization uncertainties, and how we determine the
parameters by means of a global χ2 minimization. We
also briefly sketch how we make use of Mellin moments
to include exact NLO expressions for the cross sections
(7), (11), and (14) in our analysis and how we assess un-
certainties in the extraction of fragmentation functions
with the help of the Lagrange multiplier technique.

A. Parametrization

All recent analyses of fragmentation functions are
based exclusively on SIA data [7–10] and have cho-
sen the most simple functional form Nizαi(1 − z)βi to
parametrize the DH

i at some initial scale µ0 for the Q2-
evolution (2). The structure of the SIA cross section
(7)-(10) allows to extract only information on Dπ++π−

q+q̄
from data (similarly for kaons). Without assumptions it
is impossible to distinguish “favored” or “valence” from
“unfavored” or “sea” fragmentation, for instance, Dπ+

u

from Dπ+

ū where |π+〉 = |ud̄〉. This is a serious limitation
of all present analyses [7–10], as the obtained fragmenta-
tion functions cannot be used to compare to a wealth of
recent data on the production of charged pions and kaons
in SIDIS [18] or proton-proton collisions [21]. In Ref. [7]
a linear suppression factor Dπ+

ū /Dπ+

u = (1 − z) was as-
sumed to break this “deadlock”. This was later shown to
be in fair agreement with charged pion multiplicities in
SIDIS from HERMES [18] within a LO combined analysis
of SIA and SIDIS data [34]; see also Fig. 4 and discussions
below.

In our global analysis we will determine for the first
time individual fragmentation functions for quark and
anti-quarks for all flavors as well as gluons from data.
To accommodate also the experimental information from
lepton-nucleon and hadron-hadron scattering data, we
adopt a somewhat more flexible input distribution than
in [7–10]

DH
i (z, µ0) =

Nizαi(1 − z)βi[1 + γi(1 − z)δi ]
B[2 + αi, βi + 1] + γiB[2 + αi, βi + δi + 1]

,

(15)
where B[a, b] represents the Euler Beta-function and Ni

is normalized such to represent the contribution of DH
i to

the sum rule (5). A more restrictive initial parametriza-
tion with γi = 0 in Eq. (15) would introduce artifi-
cial correlations between the behavior of fragmentation
functions in different regions of z obscuring also the as-
sessment of uncertainties. We find that the extra term
∼ (1− z)δi in Eq. (15) considerably improves the quality
of the global fit, closely related to the fact that the anal-
ysis of fragmentation functions is restricted to medium-

to-large z. Accordingly, additional power terms in z, em-
phasizing the small z region, have little or no impact on
the fit and are not pursued further. The initial scale µ0

for the Q2-evolution is taken to be µ0 = 1 GeV in our
analysis.

Since the initial fragmentation functions (15) at scale
µ0 should not involve more free parameters than can be
extracted from data, we have to impose, however, cer-
tain relations upon the individual fragmentation func-
tions for pions and kaons. We have checked in each case
that relaxing these assumptions indeed does not signif-
icantly improve the χ2 of the fit of presently available
data to warrant any additional parameters. In detail, for
{u, ū, d, d̄} → π+ we impose isospin symmetry for the
sea fragmentation functions, i.e.,

Dπ+

ū = Dπ+

d , (16)

but we allow for slightly different normalizations in the
q + q̄ sum:

Dπ+

d+d̄ = NDπ+

u+ū. (17)

For strange quarks it is assumed that

Dπ+

s = Dπ+

s̄ = N ′Dπ+

ū (18)

with N ′ independent of z.
It is worth noticing that assuming N = N ′ = 1 [7, 10]

in Eqs. (17) and (18), respectively, SIA data alone allow
to distinguish between favored and unfavored fragmenta-
tion functions in principle. We shall scrutinize the com-
patibility of these assumptions with SIDIS and hadronic
scattering data in Sec. IVF. At any rate, their impact
on the assessment of uncertainties of fragmentation func-
tions is highly non trivial.

For charged kaons we fit DK+

u+ū and DK+

s+s̄ independently
to account for the phenomenological expectation that the
formation of secondary ss̄ pairs, which is required to form
a |K+〉 = |us̄〉 from a u but not from an s̄ quark, should
be suppressed. Indeed, we find from our fit, see Sec.
IV below, that DK+

s+s̄ > DK+

u+ū in line with that expec-
tation. For the unfavored fragmentation the data are
unable to discriminate between flavors and, consequently,
we assume that all distributions have the same functional
form:

DK+

ū = DK+

s = DK+

d = DK+

d̄ . (19)

We adopt the functional form (15) also for the fragmen-
tation of heavy charm and bottom quarks into charged
pions and kaons but setting γi = 0. As in [7–10] we as-
sume that DH

c = DH
c̄ and DH

b = DH
b̄

for H = π+, K+.
Heavy flavors are included discontinuously as massless
partons in the evolution (2) above their MS “thresholds”,
Q = mc,b, with mc,b denoting the mass of the charm and
bottom quark, respectively. This treatment of heavy fla-
vors is very much at variance with heavy quark parton
densities, where very elaborate schemes have been devel-
oped to properly include mass effects near threshold and

• Allowing for possible 
breaking of SU(3) of sea and 
SU(2) in favored distributions

•unless data can not discriminate 
for unfavored fragmentations

• Normalizations for different experiments (if not included in syst.)

2002

~23 parameters
+ normalizations
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D’s obtained by global fit :      minimization

ansatz for D at Q₀
with initial set of parameters

evolve D to relevant scale Q 
using DGLAP

Calculate observable
and 

~400 data points

  minimum?

yes

result : best fit

no

change parameters
~ 10000 times

χ2 =
N�

i=1

(Ti − Ei)2

δE2
i

DdF., R. Sassot, M. Stratmann, W. Vogelsang (2008) hep-ph/0804.0422

χ2

χ2

χ2
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Main problem: how to perform so many evaluations in short time

Solution: work in Mellin space Dn
i (µ2) =

� 1

0
dz zn−1 Di(z, µ2)

✓ Convolutions become products : simple solution for evolution equations
✓ Back to “z” space can be done fast
✓ Rather natural for SIA and SIDIS (analytical)

1
2πi

�

Cn

dn z−n
c Dn

c

dσ =
�

abc

� � �
fafb dσ̂ab→cX Dc dxadxbdzc

dσ =
1

2πi

�

abc

�

Cn

dn Dn
c

� � �
fafb dσ̂ab→cX dxadxbdzc

Mellin
inversion

FIT Precompute once and save 

New technique developed to compute the grids: any observable deF, Stratmann, 
Sassot, Vogelsang

allows for >5000 ev./sec. !
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Some plots
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Good description
of SIDIS multiplicities

ad-hoc charge separation 
from Kretzer fails

large z covered

Hermes data (not final)
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FIG. 4 (color online). Left-hand side: comparison of our NLO results for charged pion multiplicities in SIDIS,
!1=NDIS"dN!#

=dzdQ2, with preliminary HERMES data [17]. Also shown are the results obtained with the KRE [7] parametrization.
Right-hand side: (data-theory)/theory for our NLO results, open and full circles denote !$ and !% multiplicities, respectively. The
shaded bands indicate estimates of theoretical uncertainties due to finite bin-size effects (see text).
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FIG. 5 (color online). Upper panels: comparison of our NLO results for single-inclusive charged pion production pp ! !#X at
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#f & #r ' 2pT . Lower panels: (data-theory)/theory for our NLO results.
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SIDIS
not so nice for K

ad-hoc charge separation 
from HKNS fails 
factor of 2 or 3!!

(EXP) even harder to fit!
(TH) issues with the slope  

More precise K data needed essential for                 determination!∆s(x,Q2)

HKNS, AKK08 and Kretzer can not be used for SIDIS !
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data. Experimental results for inclusive hadron production
in SIA and proton-proton collisions span several orders
of magnitude, and the energy scale of the different pro-
cesses ranges from 1 GeV to the mass of the Z-boson.
This strongly supports the underlying theoretical frame-
work outlined in Sec. II, in particular, the fundamental
notions of factorization and universality for fragmentation
functions.

Existing sets of NLO pion fragmentation functions [7,9]
also give a nice overall description of the SIA data included
in these analyses, as indicated in Figs. 1–3. They fail,
however, to satisfactorily reproduce charged pion produc-
tion data obtained in SIDIS and in proton-proton collisions,
Figs. 4 and 5, respectively. In addition, estimates for neu-
tral pion production rates in proton-proton collisions based
on KRE [7] or AKK [9] fragmentation function differ
substantially as can be seen in Figs. 6 and 7. On the
contrary, our new set of NLO fragmentation functions
gives, for the first time, a nice global description of hadron
production data in electron-positron, lepton-nucleon, and
hadron-hadron scattering, which constitutes a significant
and necessary improvement.

The most significant difference between our NLO global
analysis and previous extractions of D!

i in [7–10] is the
fact that we can now determine most aspects of the frag-
mentation functions from data rather than being forced to

make assumptions due to the insufficient information con-
tained in the SIA data alone. We find that, in particular, the
extra freedom regarding flavor symmetry (or the lack
thereof) as introduced in Eqs. (17) and (18) allows us to
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FIG. 7 (color online). Same as in Fig. 6 but now for STAR data
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open squares, respectively.
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• Large scale uncertainty
• Mainly samples z>0.5
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“Charge-sign asymmetries” from pp
~ 1 or 2 orders of magnitude smaller
and “huge errors”
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AKK (2008)
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the “Default” curve.

31

0 1 2 3 4 5 6 7 8 9 1010-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

Ed 3
!

                  

d p3

[mb(GeV)-2]

AKKII
AKK
DSS
HKNS

pp " #
±+X, STAR (-0.5<y<0.5), $s=200 GeV

0 1 2 3 4 5

pp " KS
0 +X, STAR (-0.5<y<0.5), $s=200 GeV

0 1 2 3 4 5 6 7
pT (GeV)

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

pp " p/p +X, STAR (-0.5<y<0.5), $s=200 GeV

0 1 2 3 4 5

pp " %/% +X (-0.5<y<0.5), $s=200 GeV

FIG. 5: As in Fig. 4, but for the STAR data. Also shown, for Λ/Λ, is the calculation using the DSV [58] FF set.

AKK (2008)

28

0 1 2 3 4 510-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

Ed 3
!

                  

d p3

[mb(GeV)-2]

Default
mh=0
k=4,1/4

pp " #
±+X, BRAHMS (2.9<y<3), $s=200 GeV

0 1 2 3 4 510-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

pp " K± +X, BRAHMS (2.9<y<3), $s=200 GeV

0 1 2 3 4 5
pT (GeV)

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

pp " p/p +X, BRAHMS (2.9<y<3), $s=200 GeV
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mass effects are neglected (the dotted curve labeled “mh = 0”) and when the ratio k = M2

f /s is increased to 4 (lower solid
curve) and decreased to 1/4 (upper solid curve). In the case of π±, the mh = 0 curve cannot be seen because it overlaps with
the “Default” curve.

σ(pp → π+)− σ(pp → π−)

22



Large       from a few isolated data points 
(small z in SIA, and some SIDIS and pp)

χ2

Typically

Also tension between experiments 
(like Delphi at large z)

very precise data

grows (~25%) for LO fits : mostly from pp data 
where NLO corrections are very large

χ2

χ2/dof ∼ 2

Pions + kaons + protons almost saturate charged hadrons:
Mainly a prediction

reproduce the charged pion data shown in Figs. 4 and 5. In
Table I we give the set of parameters specifying the opti-
mum fit of pion fragmentation functions at NLO accuracy
in Eq. (15) at our input scale !0 ! 1 GeV for the light
flavors and the gluon, and at !0 ! mc ! 1:43 GeV and
!0 ! mb ! 4:3 GeV, for charm and bottom fragmenta-
tion, respectively. As can be inferred from there, the out-
come of the global analysis deviates from the symmetry
assumptions [7,10] N ! 1 and N0 ! 1 in Eqs. (17) and (18)
by more than 10% and 20%, respectively.

Another crucial asset of our analysis is the enhanced
flexibility of the initial light quark and gluon fragmentation
functions as a function of z in Eq. (15) as compared to the
standard three parameter form used so far [7–10]. This is
not only indispensable to accommodate SIDIS and hadron-
hadron scattering data but even somewhat improves the
quality of the fit to the SIA data. Indeed, upon closer
examination of Figs. 1–3, in particular the ‘‘(data-the-
ory)/theory’’ insets for each data set on the right-hand
side (rhs) of each plot, one finds a slightly improved overall
agreement with data as compared to the, still excellent, one
for KRE and AKK; see, for instance, the TPC or ALEPH
data in Fig. 1.

Noticeable also is that our fit follows the trend of the
data even below the z values included in the analysis. As
for KRE [7], all data below zmin ! 0:05 are not taken into
account in the "2 minimization to ensure that the possible
impact of small-z resummations or hadron mass effects,
see Sec. II A, is negligible. In contrast, the agreement with
data rapidly deteriorates for AKK [9] immediately below
z ! 0:1, from which they choose to exclude data from the
fit. This might be linked with the less flexible functional
form for the fragmentation functions.

In Table II we list all data sets included in our global
analysis as discussed in Sec. III B and give the individual
"2 values for each set. We note that quoted "2 values are
based only on fitted data points, i.e., z > 0:05 for SIA, and
include normalization uncertainties determined for each
experiment in the fit. Allowing for relative normalizations
in a global analysis within the range quoted by each

experiment is a common tool to ease possible tensions
between certain data sets. Indeed we find that the global
fit considerably improves after taking into account normal-
ization ‘‘shifts.’’

In spite of the nice ‘‘visual’’ agreement between the fit
and data found in Figs. 1–8, the total "2 of 843.7 units in
Table II appears to be fairly large in view of the roughly
400 data points fitted. For the SIA data, the large "2 can be
pinpointed to only very few data points. Because of ex-
tremely high precision of the data on the Z-resonance, any
deviation between data and theory is strongly penalized in
the "2 evaluation and results in an overall "2 per degree of
freedom which is rather large. This is a common ‘‘charac-
teristic’’ of all extractions of fragmentation function made
so far [7–10]. We also wish to point out that there is a
tension between the behavior of the DELPHI data at large z
and those of all the other data sets at Q ! MZ which cannot
be resolved by the fit, see Figs. 1–3. The, in general, larger
"2 values of the heavy flavor, in particular, bottom quark,
tagged SIA cross sections in Fig. 3 might be related to
some extent to contaminations from weak decays.

TABLE I. Parameters describing the NLO fragmentation func-
tions for positively charged pions, D#"

i #z;!0$, in Eq. (15) at the
input scale !0 ! 1 GeV. Inputs for the charm and bottom
fragmentation functions refer to !0 ! mc ! 1:43 GeV and
!0 ! mb ! 4:3 GeV, respectively.

Flavor i Ni $i %i &i 'i

u" !u 0.345 %0:015 1.20 11.06 4.23
d" !d 0.380 %0:015 1.20 11.06 4.23
!u ! d 0.115 0.520 3.27 16.26 8.46
s" !s 0.190 0.520 3.27 16.26 8.46
c" !c 0.271 %0:905 3.23 0.00 0.00
b" !b 0.501 %1:305 5.67 0.00 0.00
g 0.279 0.899 1.57 20.00 4.91

TABLE II. Data used in the NLO global analysis of pion
fragmentation functions, the individual "2 values for each set,
the fitted normalizations, and the total "2 of the fit.

Experiment
Data
type

Relative
normalization

in fit

Data
points
fitted "2

TPC [15] Inclusive 0.94 17 18.5
‘‘uds tag’’ 0.94 9 1.9

‘‘c tag’’ 0.94 9 5.7
‘‘b tag’’ 0.94 9 7.4

TASSO [38] Inclusive (34 GeV) 0.94 11 30.1
Inclusive (44 GeV) 0.94 7 20.5

SLD [16] Inclusive 1.008 28 14.0
‘‘uds tag’’ 1.008 17 11.6

‘‘c tag’’ 1.008 17 11.1
‘‘b tag’’ 1.008 17 33.2

ALEPH [11] Inclusive 0.97 22 38.3
DELPHI [12] Inclusive 1.0 17 42.3

‘‘uds tag’’ 1.0 17 26.4
‘‘b tag’’ 1.0 17 42.8

OPAL [13,14] Inclusive 1.0 21 9.2
‘‘u tag’’ 1.10 5 11.8
‘‘d tag’’ 1.10 5 9.0
‘‘s tag’’ 1.10 5 49.8
‘‘c tag’’ 1.10 5 38.3
‘‘b tag’’ 1.10 5 73.0

HERMES [17] #" 1.03 32 67.4
#% 1.03 32 120.8

PHENIX [18] #0 1.09 23 76.4
STAR [22] #0, h(i ! 3:3 1.05 4 3.4

#0, h(i ! 3:7 1.05 5 9.8
BRAHMS [21] #", h(i ! 2:95 1.0 18 28.2

#%, h(i ! 2:95 1.0 18 43.0

Total 392 843.7
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Meet the Distributions : pions
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Differences with HKNS also sizeable : gluons, unfavored and large z (pp)
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Charged hadrons: Pions + kaons + protons almost saturate charged hadrons: 
residual only sizable for HQ

Mainly a prediction/check : OK
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flavor tagged cross section with the available LEP data
[4,13,14]. With the exception of the ALEPH data, the
statistical precision is not really spectacular, in particular,
in the fitted region z > zmin. All data are reasonably well
described by the fit.

Data on charged pion and kaon multiplicities in SIDIS
have provided valuable information on scale dependence
and the charge and flavor separation of the corresponding
fragmentation functions in our previous analysis [1]. For
inclusive charged hadrons, data collected by EMC [18] are
available, covering a rather large kinematic region. As
expected, these data prove to be very valuable in our global
analysis here. Figure 9 shows the outcome of the fits
compared to the EMC multiplicities for positively and
negatively charged hadrons covering all beam energies of
120, 200, and 280 GeV. The good precision of the data over
the entire z range helps to further constrain the high z
behavior of the quark and antiquark fragmentation func-
tions. An interesting thing to notice is that, even though the
KRE sets for pions and kaons overestimate the correspond-
ing SIDIS multiplicities as shown in [1], this effect is
somehow compensated for in the charged hadron multi-
plicities shown in Fig. 9 at the expense of comparatively
small residual fragmentation functions. In order to account

for the error introduced by the finite size of the bins in z and
Q2 as well as the uncertainties introduced by the use of the
pion, kaon, and proton fragmentation functions, we include
an additional 10% theoretical uncertainty in the !2 mini-
mization. There is also an additional 11% experimental
normalization uncertainty [18] not included in the errors
bars shown in Fig. 9.

The final ingredient to our global analysis of fragmenta-
tion functions Dh!

i for unidentified charged hadrons are
single-inclusive hadroproduction data from p !p collisions
measured by the UA1 [16] and UA2 [17] collaborations at
CERN and by the CDF collaboration [15] at Fermilab’s
Tevatron. We have not included proton-proton collision
data from fixed target experiments, since the validity of
fixed order calculations in pQCD at lower energies is
seriously in doubt [26]. The data span a range of c.m.s.
energies

!!!
s

p
from 200 GeV to 1.8 TeV but do not discrimi-

nate different hadron charges. Because of the dominance of
gluon-induced processes at the available small-to-medium
values of the hadron’s pT , they mainly probe the gluon
fragmentation function Dh!

g . To give an example, in the
case of UA1 at

!!!
s

p " 630 GeV, where the available data
cover the largest range of transverse momenta pT from 1 to
22 GeV, in which the gluonic contribution decreases from
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FIG. 10 (color online). Upper panels: comparison of our NLO results for single-inclusive charged hadron production p !p ! hX,
where h " #h$ $ h%&=2, with data from UA1 [16] and UA2 [17] for various c.m.s. energies

!!!
s

p
using "f " "r " pT . The UA1 data

cover jyj< 2:5, except for 630 GeV, where jyj< 3:0 and also h " #h$ $ h%&. For UA2 the rapidity range 1:0 ' jyj ' 1:8 is covered.
Also shown are the results obtained with the AKK [8] parametrization including only pions, kaons, and (anti)protons. The shaded
bands indicate theoretical uncertainties when all scales are varied in the range pT=2 ' "f " "r ' 2pT . Lower panels: (data-theory)/
theory for our NLO results.
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Uncertainties on fragmentation functions

✓ HKNS uncertainties using Hessian Method

✓DSS uncertainties using Lagrangian multipliers

only e+e- data so uncertainties are not well defined for 
             gluons and flavor/charge separation

study uncertainties for truncated moments but does not 
translate easily into uncertainties for z-dependence

fragmentation functions

Hessian method might fail when far from quadratic dependence

More work (and data!) needed for a precise estimate
of uncertainties 

D.deF, M. Stratmann, R. Sassot

M.Hirai et al
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Future:

SIDIS: COMPASS 
SIDIS: Hermes Final?
Belle/Babar: precision at lower energies
more pp data (RHIC, LHC?)

SIDIS at NNLO
Splitting at NNLO
Threshold resummation for several processes
More global fits to compare!

• More precise determination of fragmentation functions

• Realistic estimate of uncertainties and several sets to compute 
uncertainties for other observables (like pdf’s)

“next summer” {
EXP

TH

Improvements on description of fragmentation functions over the last few years
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SIDIS: Hermes Final?
Belle/Babar: precision at lower energies
more pp data (RHIC, LHC?)

SIDIS at NNLO
Splitting at NNLO
Threshold resummation for several processes
More global fits to compare!

• More precise determination of fragmentation functions

• Realistic estimate of uncertainties and several sets to compute 
uncertainties for other observables (like pdf’s)

“next summer”

TH effort usually triggered by precise data !
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the EMC one (red curve).
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DSS
EMC

Extensive measurements of multiplicities
in several variables (and bins)

We can be very
optimistic !!
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Older data not very well documented (no 
multiplicities, only FFs)
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Uncertainties on fragmentation functions
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Torino, 31 Mar. - 2 Apr. 2008
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• Uncertainties:

Fit: χ2 minimization for n data points Ei with errors δEi [Ti: theo. estim.]

χ2 =
n

X

i=1

(Ti − Ei)
2

δE2
i

Many strategies: the Hessian approach and the Lagrange-multipliers approach
(Pumplin, Stump, Tung; Stump et. al. PRD 65, 2002).

The Hessian method (HKNS):
- Expansion of χ2 around the minimum χ2

0 (N parameters ai):

∆χ2(a) = χ2 − χ2
0 =

X

i,j

Hijδaiδaj + · · ·

confidence level P = 68%: N = 1→∆χ2=1;N #=1,∆χ2 from the χ2-distribution;
For example, forN = 14 ∆χ2 = 15.94.

=⇒ [δDh
i (z)]2 = ∆χ2

X

j,k
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∂Dh
i (z, a)
∂aj

«

â
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HKNS uncertainties using Hessian Method
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Gluon: uncertainties overestimated 
due to lack of other data? 

Charge separation: uncertainties could be  
underestimated due to assumptions
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For some parameters,     profile
 VERY different from quadratic even
in global analysis

χ2
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DSS uncertainties using Lagrangian multipliers

Φ(λi, {aj}) = χ2({aj}) +
�

i

λi Oi({aj})

See how fit deteriorates when FFs forced to give different prediction for  Oi

� 1

0.2
z DH

i
(z,Q = 5GeV) dz

∆χ2 = 15(∼ 2%)

u < 5%
s ~ 10 %

dominated by z~0.2

uncertainties : factor of 2 larger for Kaons
~ 20-25% for protons
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• The flavor-separation of polarized parton distributions 
depends crucially on SIDIS results (Hermes-SMC-Compass)
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TABLE I: Data used in our analysis [2, 3], the individual
χ2 values, and the total χ2 of the fit. We employ cuts of
Q, pT > 1GeV for the DIS, SIDIS, and RHIC high-pT data.

experiment data data points χ2

type fitted

EMC, SMC DIS 34 25.7

COMPASS DIS 15 8.1

E142, E143, E154, E155 DIS 123 109.9

HERMES DIS 39 33.6

HALL-A DIS 3 0.2

CLAS DIS 20 8.5

SMC SIDIS, h± 48 50.7

HERMES SIDIS, h± 54 38.8

SIDIS, π± 36 43.4

SIDIS, K± 27 15.4

COMPASS SIDIS, h± 24 18.2

PHENIX (in part prel.) 200 GeV pp, π0 20 21.3

PHENIX (prel.) 62GeV pp, π0 5 3.1

STAR (in part prel.) 200 GeV pp, jet 19 15.7

TOTAL: 467 392.6

spond to the maximum variations for ALL computed with
alternative fits consistent with an increase of ∆χ2 = 1 or
∆χ2/χ2 = 2% in the total χ2 of the fit.

Our newly obtained antiquark and gluon PDFs are
shown in Fig. 2 and compared to previous analysis [4, 6].
For brevety, the total ∆u+∆ū and ∆d+∆d̄ densities are
not shown as they are very close to all other fits [4–6].
Here, the bands correspond to fits which maximize the
variations of the truncated first moments,

∆f1,[xmin−xmax]
j (Q2) ≡

∫ xmax

xmin

∆fj(x, Q2)dx, (8)

at Q2 = 10 GeV2 and for [0.001 − 1]. As in Ref. [6]
they can be taken as faithfull estimates of the typical
uncertainties for the antiquark densities. For the elusive
polarized gluon distribution, however, we perform a more
detailed estimate, now discriminating three regions in x:
0.001-0.05, 0.05-0.2 (roughly corresponding to the range
probed by present RHIC data), and 0.2-1.0. Within each
region, we scan again for alternative fits that maximize
the variations of the truncated moments ∆g1,[xmin−xmax],
sharing evenly to ∆χ2. In this way we can produce a
larger variety of fits than for a single ([0.001−1]) moment,
and, therefore, a more conservative estimate. Such a pro-
cedure is not necessary for antiquarks whose x-shape is
already much better determined by DIS and SIDIS data.
One can first of all see in Fig. 2 that ∆g(x, Q2) comes out
rather small, even when compared to fits with a “moder-
ate” gluon polarization [4, 6], with a possible node in the
distribution. This is driven by the RHIC data which put
a strong constraint on the size of ∆g for 0.05 ! x ! 0.2
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FIG. 1: Comparison of RHIC data [3] and our fit. The shaded
bands correspond to ∆χ2 = 1 and ∆χ2/χ2 = 2% (see text).
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FIG. 2: Our polarized sea and gluon densities compared to
previous fits [4, 6]. The shaded bands correspond to alterna-
tive fits with ∆χ2 = 1 and ∆χ2/χ2 = 2% (see text).

but cannot determine its sign as they mainly probe ∆g
squared. To explore this further, Fig. 3 shows the χ2

profile and partial contributions ∆χ2
i of the individual

data sets for variations of the moment computed for this
x range. A nice degree of complementarity and consis-
tency between is found. A small ∆g at x # 0.2 is also
consistent with data for ALL from lepton-nucleon scatter-
ing [15], which still lack a proper NLO description. The
small x region remains still largely unconstrained.

We also find that the SIDIS data give rise to a ro-
bust pattern for the sea polarizations, clearly deviating

DSSV (deF, Stratmann, Sassot, Vogelsang) 
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Different FFs            very different results for spin dependent distributions
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• Extraction of polarized gluon density depends much 
   on PHENIX and STAR pion data

TABLE I: Data used in our analysis [2, 3], the individual
χ2 values, and the total χ2 of the fit. We employ cuts of
Q, pT > 1GeV for the DIS, SIDIS, and RHIC high-pT data.
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Here, the bands correspond to fits which maximize the
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∫ xmax

xmin

∆fj(x, Q2)dx, (8)

at Q2 = 10 GeV2 and for [0.001 − 1]. As in Ref. [6]
they can be taken as faithfull estimates of the typical
uncertainties for the antiquark densities. For the elusive
polarized gluon distribution, however, we perform a more
detailed estimate, now discriminating three regions in x:
0.001-0.05, 0.05-0.2 (roughly corresponding to the range
probed by present RHIC data), and 0.2-1.0. Within each
region, we scan again for alternative fits that maximize
the variations of the truncated moments ∆g1,[xmin−xmax],
sharing evenly to ∆χ2. In this way we can produce a
larger variety of fits than for a single ([0.001−1]) moment,
and, therefore, a more conservative estimate. Such a pro-
cedure is not necessary for antiquarks whose x-shape is
already much better determined by DIS and SIDIS data.
One can first of all see in Fig. 2 that ∆g(x, Q2) comes out
rather small, even when compared to fits with a “moder-
ate” gluon polarization [4, 6], with a possible node in the
distribution. This is driven by the RHIC data which put
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but cannot determine its sign as they mainly probe ∆g
squared. To explore this further, Fig. 3 shows the χ2

profile and partial contributions ∆χ2
i of the individual

data sets for variations of the moment computed for this
x range. A nice degree of complementarity and consis-
tency between is found. A small ∆g at x # 0.2 is also
consistent with data for ALL from lepton-nucleon scatter-
ing [15], which still lack a proper NLO description. The
small x region remains still largely unconstrained.

We also find that the SIDIS data give rise to a ro-
bust pattern for the sea polarizations, clearly deviating

395

400

405

410

-0.2 0 0.2

2

g1, [ 0.05-0.2 ]

all data sets
x-range: 0.05-0.2

(a)

2
i

g1, [ 0.05-0.2 ]

PHENIX
STAR
SIDIS
DIS

(b) 0

5

10

15

-0.2 0 0.2

DSSV (deF, Stratmann, Sassot, Vogelsang) 

wrong                           wrongDg ∆g

37



15

!"#$%&'()*+,*-

pT [GeV]

pp! gX

pp! qX

pT [GeV]

./,*)+0$)+'%1%*#$
2345678$1+*+9

!!0(!$': 1+*+$')(;/$<0=(,$>)+<&/,*+*%(,

>()!+)1$)+'%1%*#$
2?:@A$1+*+9

E! [GeV] E! [GeV]

!!')(;/$<0=(,$+,1$B=+)C$>)+<&/,*+*%(,$+*$0+)</$D

EA@4F? !"G$H" 1+*+$2"## I9 ! >0+J()$K/'+)+*%(,$>)(&$''$1+*+

central 
rapidity
PHENIX

14

!!"! #$ !"#$%&'#('&)*+',-.#$/012-3#$/'40/
56.#)%&7.+'8#'9)6$:&7

%! !

;#))<=76;'3$&>#;6$=?'3&1(6$:@&(:67/
ABC'16$$#1(:67%

P
"
" [GeV]

#*.*/'"#$D'7:1#'8&(&'3$6>'EFGH?

!&'( 0I!E &78'JE!F40

K%:7.'L00'
3$&.*'31(*

Example @ Phenix 

• low transverse momentum probe 
gluon fragmentation

Lot of “initial gluon” 
(gg and qg)

“flavor blind”

38



17. Fragmentation functions in e+e−, ep and pp collisions 11

The most relevant source for quark-antiquark (and also flavor) separation is provided
by data from semi-inclusive DIS (SIDIS). Semi-inclusive measurements are usually
performed at much lower scales than for e+e− annihilation. The inclusion of SIDIS data
in global fits allows for a wider coverage in the evolution of the fragmentation functions,
resulting at the same time in a stringent test of the universality of these distributions.
Charged-hadron production data in hadronic collisions also presents a sensitivity on
(anti-)quark fragmentation functions.

The gluon fragmentation function Dg(x) can be extracted, in principle, from the
longitudinal fragmentation function FL in Eq. (17.2), as the coefficient functions CL,i
for quarks and gluons are comparable at order αs. However at NLO, i.e., including the
O(α2

s ) coefficient functions C
(2)
L,i [23], quark fragmentation is dominant in FL over a large

part of the kinematic range, reducing the sensitivity on Dg . This distribution could be
determined also analyzing the evolution of the fragmentation functions. This possibility is
limited by the lack of sufficiently precise data at energy scales away from the Z-resonance
and the dominance of the quark contributions and at medium and large values of x.

Dg can also be deduced from the fragmentation of three-jet events in which the gluon
jet is identified, for example, by tagging the other two jets with heavy quark decays. To
leading order, the measured distributions of x = Ehad/Ejet for particles in gluon jets can
be identified directly with the gluon fragmentation functions Dg(x). At higher orders the
theoretical interpretation of this observable is ambiguous.

A direct constraint on Dg is provided by pp, pp̄ → hX data. At variance with e+e−

annihilation and SIDIS, for this process gluon fragmentation starts to contribute at the
lowest order in the coupling constant, introducing a strong sensitivity on Dg . At large
x ! 0.5, where information from e+e− is sparse, data from hadronic colliders facilitate
significantly improved extractions of Dg [93,94].
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Figure 17.6: Comparison of up, strange, charm and gluon NLO fragmentation
functions for π+ + π− at the mass of the Z. The different lines correspond to the
result of the most recent analyses performed in Refs. [93,94,98].

A comparison of recent fits of NLO fragmentation functions for π+ + π− obtained by
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17. Fragmentation functions in e+e−, ep and pp collisions 1

17. FRAGMENTATION FUNCTIONS
IN e+e−, ep AND pp COLLISIONS

Revised October 2009 by O. Biebel (Ludwig-Maximilians-Universität, Munich, Germany),
D. de Florian (Dep. de F́ısica, FCEyN-UBA, Buenos Aires, Argentina), D. Milstead
(Fysikum, Stockholms Universitet, Sweden), and A. Vogt (Dep. of Mathematical Sciences,
University of Liverpool, UK).

17.1. Introduction to fragmentation

The term ‘fragmentation functions’ is widely used for two related if conceptually
different sets of functions describing final-state single particle energy distributions in
hard scattering processes (see Refs. [1,2] for introductory reviews, and Refs. [3,4] for
summaries of recent experimental and theoretical research in this field).

The first are cross-section observables such as the functions FT,L,A(x, s) in semi-
inclusive e+e− annihilation at center-of-mass (CM) energy

√
s via an intermediate photon

or Z-boson, e+e− → γ/Z → h +X , given by

1
σ0

d 2σh

dx d cos θ
=

3
8
(1 + cos2 θ)Fh

T +
3
4

sin2 θ Fh
L +

3
4

cos θ Fh
A . (17.1)

Here x = 2Eh/
√

s ≤ 1 is the scaled energy of the hadron h (in practice the approximation
x $ xp = 2ph/

√
s is often used), and θ is its angle relative to the electron beam in the

CM frame. Eq. (17.1) is the most general form for unpolarized inclusive single-particle
production via vector bosons [5]. The transverse and longitudinal fragmentation functions
FT and FL represent the contributions from γ/Z polarizations transverse or longitudinal
with respect to the direction of motion of the hadron. The parity-violating term with the
asymmetric fragmentation function FA arises from the interference between vector and
axial-vector contributions. Normalization factors σ0 used in the literature range from the
total cross section σtot for e+e− → hadrons, including all weak and QCD contributions,
to σ0 = 4πα2Nc/3s with Nc = 3, the lowest-order QED cross section for e+e− → µ+µ−

times the number of colors Nc . LEP1 measurements of all three fragmentation functions
are shown in Fig. 17.1.

K. Nakamura et al., JPG 37, 075021 (2010) (http://pdg.lbl.gov)
July 30, 2010 14:36
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Can we say something about the strange pdf?
May be, first make sure fragmentation is right!
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Figure 1: HERMES results for the multiplicity of charged kaons in semi-inclusive DIS from a deuterium target
(left panel) and of the derived strange parton distribution xS(x) at Q2

0 = 2.5 GeV2 (right panel), as a function of
Bjorken x.

mental constraints, current global QCD fits of particle distribution functions (PDFs) assume
s(x) (s̄(x)) to be related to the DFs of light antiquarks by s(x) = s̄(x) = r[ū(x) + d̄(x)]/2
with r ≈ 0.3 − 0.5 at some low factorisation scale. HERMES has recently performed the first
extraction of S(x) = s(x) + s̄(x) from the multiplicity of charged kaons in semi-inclusive deep-
inelastic scattering (SIDIS) from a deuteron target 4. Because strange quarks carry no isospin,
the strange seas in the proton and the deuteron can be assumed to be identical. In the deuteron,
an isoscalar target, the fragmentation process in deep-inelastic scattering (DIS) can be described
by fragmentation functions (FFs) that have no isospin dependence. Aside from isospin symme-
try between proton and neutron, the only symmetry assumed is charge-conjugation invariance
in fragmentation. In Leading Order the charged kaon multiplicities are then given by:

dNK(x)
dNDIS(x)

=
Q(x)

∫
DK

1,Q(z)dz + S(x)
∫

DK
1,S(z)dz

5Q(x) + 2S(x)
. (1)

Here Q(x) ≡ u(x) + ū(x) + d(x) + d̄(x), DK
1,Q(z) ≡ 4DK

1,u(z) + DK
1,d(z) and DK

1,S(z) ≡ 2DK
1,s(z),

and z ≡ EK/ν with ν and EK the energies of the virtual photon and the detected kaon in the
target rest frame. The measured kaon multiplicity corrected to 4π is shown in the left panel
of Fig. 1 as a function of x. The data are not reproduced (see dotted curve) by fitting the
points using the CTEQ6L 5 strange quark DFs and with

∫
DK

1,Q(z)dz and
∫

DK
1,S(z)dz as free

parameters. Instead
∫ 0.8
0.2 DK

1,Q(z)dz = 0.398 ± 0.010 was determined from the data at x > 0.15,
where S(x) is compatible with zero. This value was then used together with values of Q(x)
from CTEQ6L and the value

∫
DK

1,S(z)dz = 1.27 ± 0.13 from de Florian et al. 6 to obtain in
an iterative procedure the distribution xS(x) presented in the right panel of Fig. 1. Hereby the
multiplicities were evolved to a common Q2

0 = 2.5 GeV2. The solid curve is a fit to the data.
The shape is incompatible with xS(x) from CTEQ6L as well as the assumption of an average
of an isoscalar nonstrange sea.

3 Transverse-momentum dependent distribution and fragmentation functions

A complete description of the partonic structure of the nucleon in leading twist requires three
DFs that survive integration over intrinsic transverse momenta. These are the unpolarized quark
DF q

(
x,Q2

)
, the quark helicity DF ∆q

(
x,Q2

)
, and the chiral-odd transversity DF δq

(
x,Q2

)
7.

In addition there are five other transverse-momentum dependent DFs that do not survive the
integration 8. Experimentally these are essentially unexplored. Examples are the time-reversal
odd Sivers DF 9, f⊥

1T (x)), that describes the distribution of unpolarised quarks in a transversely
polarised nucleon and can be related to orbital angular momenta of quarks 10, and the Boer-
Mulders DF 11, h⊥

1 (x), for transversely polarised quarks in an unpolarised nucleon.
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Figure 1: HERMES results for the multiplicity of charged kaons in semi-inclusive DIS from a deuterium target
(left panel) and of the derived strange parton distribution xS(x) at Q2

0 = 2.5 GeV2 (right panel), as a function of
Bjorken x.

mental constraints, current global QCD fits of particle distribution functions (PDFs) assume
s(x) (s̄(x)) to be related to the DFs of light antiquarks by s(x) = s̄(x) = r[ū(x) + d̄(x)]/2
with r ≈ 0.3 − 0.5 at some low factorisation scale. HERMES has recently performed the first
extraction of S(x) = s(x) + s̄(x) from the multiplicity of charged kaons in semi-inclusive deep-
inelastic scattering (SIDIS) from a deuteron target 4. Because strange quarks carry no isospin,
the strange seas in the proton and the deuteron can be assumed to be identical. In the deuteron,
an isoscalar target, the fragmentation process in deep-inelastic scattering (DIS) can be described
by fragmentation functions (FFs) that have no isospin dependence. Aside from isospin symme-
try between proton and neutron, the only symmetry assumed is charge-conjugation invariance
in fragmentation. In Leading Order the charged kaon multiplicities are then given by:

dNK(x)
dNDIS(x)

=
Q(x)

∫
DK

1,Q(z)dz + S(x)
∫

DK
1,S(z)dz

5Q(x) + 2S(x)
. (1)

Here Q(x) ≡ u(x) + ū(x) + d(x) + d̄(x), DK
1,Q(z) ≡ 4DK

1,u(z) + DK
1,d(z) and DK

1,S(z) ≡ 2DK
1,s(z),

and z ≡ EK/ν with ν and EK the energies of the virtual photon and the detected kaon in the
target rest frame. The measured kaon multiplicity corrected to 4π is shown in the left panel
of Fig. 1 as a function of x. The data are not reproduced (see dotted curve) by fitting the
points using the CTEQ6L 5 strange quark DFs and with

∫
DK

1,Q(z)dz and
∫

DK
1,S(z)dz as free

parameters. Instead
∫ 0.8
0.2 DK

1,Q(z)dz = 0.398 ± 0.010 was determined from the data at x > 0.15,
where S(x) is compatible with zero. This value was then used together with values of Q(x)
from CTEQ6L and the value

∫
DK

1,S(z)dz = 1.27 ± 0.13 from de Florian et al. 6 to obtain in
an iterative procedure the distribution xS(x) presented in the right panel of Fig. 1. Hereby the
multiplicities were evolved to a common Q2

0 = 2.5 GeV2. The solid curve is a fit to the data.
The shape is incompatible with xS(x) from CTEQ6L as well as the assumption of an average
of an isoscalar nonstrange sea.

3 Transverse-momentum dependent distribution and fragmentation functions

A complete description of the partonic structure of the nucleon in leading twist requires three
DFs that survive integration over intrinsic transverse momenta. These are the unpolarized quark
DF q

(
x,Q2

)
, the quark helicity DF ∆q

(
x,Q2

)
, and the chiral-odd transversity DF δq

(
x,Q2

)
7.

In addition there are five other transverse-momentum dependent DFs that do not survive the
integration 8. Experimentally these are essentially unexplored. Examples are the time-reversal
odd Sivers DF 9, f⊥

1T (x)), that describes the distribution of unpolarised quarks in a transversely
polarised nucleon and can be related to orbital angular momenta of quarks 10, and the Boer-
Mulders DF 11, h⊥

1 (x), for transversely polarised quarks in an unpolarised nucleon.

Hermes

Careful : only true at LO!!!
from fit of 
same data

Spin-off 

Better: check directly multiplicities with different strange distributions 
(even possible to fit them at NLO)
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• Present TH challenge: Serious disagreement between TH 
and EXP for fixed target kinematics in pp collisions

Ad-hoc intrinsic transverse momentum sometimes introduced. 
But pQCD can solve the problem : resummation 

D.deF,  W.Vogelsang
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