Recent JLab Nucleon Spin Experiments/Results

6/2011

Zein-Eddine Meziani Temple University

Transverse structure of the nucleon and dynamical effetcs

- Semi-inclusive
 - ✓ Collins, Sivers, etc...
- Inclusive
 - Small angle GDH an polarizabilities
 - \checkmark g₂ and d₂ and Lorentz color force

IWHSS'11 International Workshop on Hadron Structure and Spectroscopy

IWHSS'11, Paris, France

Jefferson Lab

4/6/2011

SIDIS electroproduction of pions

• With spin one can separate Sivers and Collins effetcs

- Sivers angle, effect in distribution function:
 - $(\Pi_h \Pi_s)$ = angle of hadron relative to *initial* quark spin
- Collins angle, effect in fragmentation function:
 - $(\Pi_h + \Pi_s) = \Box + (\Pi_h \Pi_{s'}) = angle of hadron relative to$ *final*quark spin

Transverse Spin Structure: Leading Twist→ Nucleon SpinTMDs→ Quark Spin

Quark /Nucleo n		Quark polarization		
		Un-Polarized	Longitudinally Polarized	Transversely Polarized
Nucleon Polarization	U	<i>f</i> ₁ = •		$h_1^{\perp} = \begin{array}{c} \bullet \\ Boer-Mulder \end{array}$
	L		$g_1 = - + - + +$ Helicity	$h_{1L} = \checkmark - \checkmark$
	т	$f_{1T}^{\perp} = \underbrace{\bullet}_{Sivers} - \underbrace{\bullet}_{t}$	$g_{1T}^{\perp} = $ $(\bullet -)$ $(\bullet -)$	$h_{1T} = \underbrace{\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$

Transversity distribution

 Quark transverse polarization in a transversely polarized nucleon:

 $h_{1T} =$ $h_{1T} =$ $h_{1T} =$

- Can be probed in Semi-Inclusive DIS, Drell-Yan processes.
- Does not mix with gluons, has valence like behavior.
- Nucleon tensor charge can be extracted from the lowest moment of h₁ and compared to LQCD calculation:

$$\sigma_{UT}: \sin{(\phi_h - \phi_s)} f_{1T}^\perp \otimes D_1, \qquad \cos{(\phi_h + \phi_s)} h_1 \otimes H_1^\perp$$

$$PSar{\psi}\sigma^{\mu
u}\psi PS
angle = \int_0^1 dx \left[\delta q(x) - \deltaar{q}(x)
ight]$$

IWHSS'11, Paris, France

Transversity using COMPASS and HERMES SIDIS data $eN^{\uparrow} \rightarrow eHX$ and the Belle data $e^+e^- \rightarrow H_1H_2X$

- A good start, good agreement with models
- Soffer bound imposed in the extraction
- What happens if it is not imposed. Is the Soffer bound violated;
- Soft gluon emission should reduce the extracted quantity by c factor of 2 ?! (Boer, 2008)

Anselmino et al. 2008

E06-010 Experiment to access the neutron

Spokespeople: X. Jiang (Los Alamos), J.-P. Chen (JLab), H. Gao (Duke), J.C. Peng (UIUC), Students: XinQian (Duke), ChiranjibDutta (Kentucky), and KalyanAllada (Kentucky)

- Polarized ³He Target
- Polarized Electron Beam
 - $\sim 80\%$ Polarization
 - Fast Flipping at 30Hz
 - PPMlevel charge Asymmetry controlled by online feed back
- BigBite at 30° as Electron Arm
 P_e = 0.7 ~ 2.2 GeV/c
- HRS_L at 16° as Hadron Arm
 P_h = 2.35 GeV/c

Preliminary ³He Collin/Sivers Asymmetries

At leading twist: Collins: $2 < \cos(\phi_h + \phi_s) > \infty h_{1T}^q \otimes H_{1q}^h$ Sivers: $2 < \cos(\phi_h - \phi_s) > \infty f_{1T}^q \otimes D_{1q}^h$

* Systematic uncertainty is still under study

4/6/2011

* Curves are Naïve ³He (n +2p with effective polarizations)

Preliminary Neutron Collin/Sivers Asymmetries

- Systematic uncertainty is still under study
- Curves: Diquark-quark Model (Ma), Global Fit (Anselmino), Light-Cone quark model (Pasquini)

Preliminary Neutron A_{LT}

At leading twist:
$$A_{
m LT}^{\cos(\phi_h^{-\phi_s^{-})}} \propto g_{1T}^{\,q} \otimes D_{1q}^{\,h}$$

- Preliminary neutron A_{LT} (results also available for ³He)
- * Systematic uncertainty is still under work

Hall A Transversity Projected Data Using SOLID

- Total 1400 bins in x, Q^2 , P_T and z for 11/8.8 GeV beam.
- z ranges from 0.3 ~ 0.7, only one z and Q² bin of 11/8.8 GeV is shown here. π^+ projections are shown, similar to the π^- .

TMDs program @ 12 GeV in Hall B

PAC approved experiments & Lol

- Complete program of TMDs studies for pions and kaons
- Kaon measurements crucial for a better understanding of the TMDs "kaon puzzle"
- Kaon SIDIS program requires an upgrade of the CLAS12 detector PIDRICH detector to replace LTCC
 Project under development

Inclusive Polarized Scattering

$$\frac{d^{2}\sigma}{dE'd\Omega}(\downarrow \Uparrow - \uparrow \Uparrow) = \frac{4\alpha^{2}}{MQ^{2}}\frac{E'}{\nu E}\left[(E + E'\cos\theta)g_{1}(x,Q^{2}) - \frac{Q^{2}}{\nu}g_{2}(x,Q^{2})\right] = \Delta\sigma_{\parallel}$$

$$\frac{d^{2}\sigma}{dE'd\Omega}(\downarrow \Rightarrow - \uparrow \Rightarrow) = \frac{4\alpha^{2}\sin\theta}{MQ^{2}}\frac{E'^{2}}{\nu^{2}E}\left[\nu g_{1}(x,Q^{2}) + 2Eg_{2}(x,Q^{2})\right] = \Delta\sigma_{\perp}$$

$$Q^{2} = 4 \text{-momentum transfer squared of the virtual photon.}$$

$$\nu = \text{energy transfer.}$$

$$\theta = \text{scattering angle.}$$

$$x = \frac{Q^{2}}{2M\nu} \text{ fraction of nucleon momentum carried by the struck quark.}$$

Generalized Spin Polarizabilities of the Neutron

$$T(\nu, Q^2) = \varepsilon'^* \cdot \varepsilon f_T(\nu, Q^2) + f_L(\nu, Q^2) + i\sigma \cdot (\varepsilon'^* \times \varepsilon) g_{TT}(\nu, Q^2) - i\sigma \cdot [(\varepsilon'^* - \varepsilon) \times \hat{q}] g_{LT}(\nu, Q^2)$$

$$\operatorname{Re} \frac{g_{TT}}{M^2} \operatorname{nonpole}(\nu, Q^2) = \frac{2\alpha_{\text{em}}}{M^2} I_A(Q^2)\nu + \gamma_0(Q^2)\nu^3 + \mathcal{O}(\nu^5)$$

$$\operatorname{Re} \frac{g_{LT}}{M^2} \operatorname{nonpole}(\nu, Q^2) = \frac{2\alpha_{\text{em}}}{M^2} Q I_3(Q^2) + Q \delta_{LT}(Q^2)\nu^2 + \mathcal{O}(\nu^4)$$

$$\begin{split} \mathbf{\gamma_0}(Q^2) &= \frac{16M^2\alpha_{\rm em}}{Q^6} \int_0^{x_0} x^2 \left\{ g_1(x,Q^2) - \frac{Q^2}{\nu^2} g_2(x,Q^2) \right\} \, dx \\ \mathbf{\delta_{LT}}(Q^2) &= \frac{16M^2\alpha_{\rm em}}{Q^6} \int_0^{x_0} x^2 \left\{ g_1(x,Q^2) + g_2(x,Q^2) \right\} \, dx \\ \mathbf{\delta_{LT}}(Q^2) &\to \frac{1}{3}\mathbf{\gamma_0}(Q^2), \quad Q^2 \to \infty \end{split}$$

E97-110 Small angle GDH experiment

E08-027 : Proton g₂ Structure Function Fundamental spin observable has never been measured at low or moderate Q² Spokesmen: Camsonne, Crabb, Chen, Slifer(contact) A⁻ rating by PAC33

<u>BC Sum Rule</u> : violation suggested for proton at large Q², but found satisfied for the neutron &³He.

<u>Spin Polarizability</u>: Major failure (>8 \int) of |PT for neutronTM_{LT}. Need g₂ isospinseparation to solve.

<u>Hydrogen Hyperfine Splitting</u> : Lack of knowledge of g_2 at low Q^2 is one of the leading uncertainties.

<u>Proton Charge Radius</u> : also one of the leading uncertainties in extraction of $\langle R_p \rangle$ from (-H Lamb shift).

 g_2 data strongly anticipated by theorists

g₂ and Quark-Gluon Correlations

 $g_2(x,Q^2) = g_2^{WW}(x,Q^2) + \bar{g}_2(x,Q^2)$

• a twist-2 term (Wandzura & Wilczek, 1977):

4/6/2011

$$g_2^{WW}(x,Q^2) = -g_1(x,Q^2) + \int_x^1 g_1(x,Q^2) \frac{dy}{y}$$

• a twist-3 term with a suppressed twist-2 piece (Cortes, Pire & Ralston, 1992):

$$\bar{g}_{2}(x,Q^{2}) = -\int_{x}^{1} \frac{\partial}{\partial y} \left[\frac{m_{q}}{M} \frac{h_{T}(y,Q^{2})}{M} + \underbrace{\xi(y,Q^{2})}_{q-g} \frac{dy}{y} \right] \frac{dy}{y}$$
Transversity
$$q-g \text{ correlations}$$
17

Moments of Structure Functions

$$d_2(Q^2) = 3\int_0^1 x^2 \left(g_2(x,Q^2) - g_2^{WW}(x,Q^2)\right) dx$$

Average Color Lorentz Force (M. Burkardt)

$$\int dx x^2 \bar{g}_2(x) = \frac{1}{3} d_2 = \frac{1}{6MP^{+2}S^x} \left\langle P, S \left| \bar{q}(0)gG^{+y}(0)\gamma^+q(0) \right| P, S \right\rangle$$

 \hookrightarrow d_2 a measure for the color Lorentz force acting on the struck quark in SIDIS in the instant after being hit by the virtual photon

$$\langle F^y(0)
angle = -M^2 d_2$$
 (rest frame; $S^x = 1$)

IWHSS'11, Paris, France

Hall A d₂ⁿ and Hall C SANE experiments Neutron and Proton

Spokespeople: B. Sawatzky, S. Choi, X. Jiang and Z.-E.M

Students: D. Flay, D. Parno, M. Posik

and the Hall A collaboration

Spokespeople: O. Rondon, S. Choi, M. Jones,, Z.-E. M

Students: W. Armstrong, H. Kang, A. Liyanage, J. Maxwell, J. Mulholland

and the Hall C collaboration

Experiment E06-114 (d₂ⁿ) in Hall A

Two beam energies 4.6 and 5.7 GeV (4 pass, 5 pass)

4/6/2011 Jan.-Mar. 09

BigBite fixed at single scattering angle (=45°) (data divided into 10 bins during analysis)

IWHSS'11, Paris, France

A₁ He3 at 4.7 GeV beam energy

Very preliminary

A₂ He3 at 4.7 GeV beam energy

IWHSS'11, Paris, France

Expected precision in Experiment E06-114

- At large Q², d₂ coincides with the reduced twist-3 matrix element of gluon and quark operators
- At low Q², d₂ is related to the spin polarizabilities

IWHSS'11, Paris, France

SANE experiment in Hall C

- Two beam energies:
 - 6.0 GeV (black)
 - 4.8 GeV (green)

- 85 nA
 - 75% beam polarization

Experiment Ran January-March 09

BETA detector

- Three subsystems:
 - Lead glass calorimeter
 Energy Measurement
 - Gas Cherenkov: e- ider
 - Lucite hodoscope: track
 - Front tracker: tracking
- Target field sweeps background
- Characteristics
 - Effective solid angle (w 0.194 sr
 - Energy resolution 5%/1
 - angular resolution = 2[°]
 - 1000:1 pion rejection

Calorimeter

Preliminary Results: Parallel w /Kinematic Cuts

SANE experiment g_2 , g_1 projected errors

d_2^p RSS and SANE d_2^p projection in Hall C

IWHSS'11, Paris, France

g₂ at JLab with 11 GeV

Summary

- SIDIS experiment in Hall A using a transversely polarized ³He target is a window on transversity in the neutron but more precision is needed as well as the extension of the kinematic range.
- Issue with δ_{LT} at low Q^2. Results confirmed and chiral perturbation calculation disagree.
- g_2 for the proton to be measured at low Q^2 to improve on the polarizabilities calculations of the hydrogen hyperfine splitting
- In the next year we will have final results SANE in Hall C (proton) and E06-14 in Hall A (neutron). Preliminary results are encouraging.
 © Extracted average color Lorentz force will be improved
- SIDIS and DIS will continue with the 12 GeV upgrade for more precision and extension of the kinematic range in the relevant variables.

