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Introduction

I α = electric polarizability, β = magnetic polarizability
units: 10−4fm3

forward polarizability of pion, α + β
backward polarizability of pion, α− β

I Prediction of ChPT at O(p6) [GIS]:
απ+ + βπ+ = 0.16± 0.1, απ+ − βπ+ = 5.7± 1.0

I Prediction of Ref. [FK]:
απ+ + βπ+ = 0.17± 0.02, απ+ − βπ+ = 13.60± 2.15



Experimental Information and Data Analysis Backward

polarizability απ+ − βπ+ in units of 10−4 fm3

reaction analysis [experiment] απ+ − βπ+

π−Z → γπ−Z Serpukhov (1983) 15.6± 6.4± 4.4

COMPASS(201?) ??±??±??

γp → π+n Lebedev (1984) 40± 24

Mainz (2005) 11.6± 1.5± 3.0± 0.5

γγ � π+π− D. Babusci et al. (1992)
[PLUTO (1984)] 38.2± 9.6± 11.4
[DM1 (1986)] 34.4± 9.2
[DM2 (1987)] 52.6± 14.8
[MARK II (1990)] 4.4± 3.2

J.F. Donoghue & B. Holstein (1993) 5.4
[MARK II (1990)]

A. Kaloshin & V. Serebryakov (1994) 5.25± 0.95
[MARK II (1990), CBC (1990)]

L. Fil’kov (2005) 13.0 (+2.6,−1.9)
[TPC/2γ (1986),MARK II (1990)]
[CELLO (1992), VENUS (1995)]
[ALEPH (2003), BELLE (2005)]



Compton Scattering: Kinematics

γ(k) + π(p)→ γ(k ′) + π(p′)

3 Mandelstam variables:
s = (k + p)2, t = (k − k ′)2, u = (k − p′)2

(constraint s + t + u = 2m2
π)

Mandelstam plane: Xing-symmetric ν = (s − u)/(4mπ) and t

(ν, t)⇔ photon lab energies Eγ and E ′γ and lab scattering angle θ:

ν = Eγ + t/(4mπ) = 1
2(Eγ + E ′γ)

t = −4Eγ E ′γ sin2(θ/2) = −2mπ(Eγ − E ′γ)

Scattering matrix has 2 independent amplitudes:
M+−(ν, t) helicity-flip, forward scattering, ⇒ α + β
M++(ν, t) NO helicity-flip, backward scattering, ⇒ α− β



Physical regions in Mandelstam plane

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

s 
=
 m

2

s 
=
 4

m

2

θ = 0

θ
 =

 1
8
0 o

t = 4 m
2

u
 =

 m 2

u
 =

 4
m 2

ν (GeV)

t 
(G

e
V

2
)

s 
=
 m

2

s 
=
 4

m

2

θ = 0

θ
 =

 1
8
0 o

t = 4 m
2

u
 =

 m 2

u
 =

 4
m 2

ν (GeV)

t 
(G

e
V

2
)

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

I red hatched:
physical regions
γ + γ → π + π
γ + π → γ + π

I two-pion thresholds
at s = 4m2

π, u = 4m2
π,

t = 4m2
π

I DR integration paths
t = 0 (forward),
θ = 180◦ (backward)
u = m2

π, s = m2
π, . . .



Chiral Perturbation Theory

I pion-pion interaction at low energies ruled by
chiral symmetry of QCD

I χPT systematic expansion in small momenta and
symmetry-breaking terms (quark/pion mass)

I chiral symmetry requires derivative coupling

I L2 = F 2
π
4 [DµUDµU† + m2

π(U + U†)]

I electroweak interaction added by covariant derivative:
DµU = ∂µU − ie(QπU − UQπ)Aµ

I Fπ=decay constant, mπ=mass, Qπ=charge



Tree Diagrams

(1) (2) (3)

Figure 1: Tree diagrams contributing to Z2. The mass in the propagators is identified with the
physical pion mass at this order.

One may therefore remove the divergences in the two–loop amplitude by simply dropping
the singular part. The finite pieces one is left with may be estimated via resonance
exchange (see below). In the following, we use the notation

δAC

6 =
ar,c

1 M2 + ar,c
2 s

(16π2F 2)2
,

δBC

6 =
br,c

(16π2F 2)2
, (4.17)

for the total contribution from L6.

5 Results at O(p2),O(p4)

The process γγ → π+π− occurs already at tree level, in contrast to the situation in the
neutral channel, where the leading term starts at one–loop order. The amplitude at tree
level coincides with the one obtained from scalar electrodynamics,

AC =

[

1

M2 − t
+

1

M2 − u

]

+ O(1) ,

BC =
1

2s

[

1

M2 − t
+

1

M2 − u

]

+ O(1) . (5.1)

The pion mass in the propagators is identified with the physical one at this order in the
expansion. The corresponding Feynman diagrams are depicted in Fig. 1. The next–to–
leading term Z4 contains two types of contributions: one–loop graphs generated by L2

and tree graphs involving one vertex from L4. The term proportional to the low–energy
constant l3 in the lagrangian L4 is quadratic in the fields. One may therefore shift the
pion mass squared according to M2 → M2

0 = M2 +2M4l3/F
2 and from now on we denote

the pion propagator by (M2
0 − p2)−1, also in Fig. 1. Evaluating the several diagrams to

O(p4) (Fig. 2) gives [6]

AC =

[

1

M2
π − t

+
1

M2
π − u

]

+
2

F 2

[

Ḡ(s) +
l̄∆

48π2

]

+ O(p2) ,

BC =
1

2s

[

1

M2
π − t

+
1

M2
π − u

]

+ O(1) . (5.2)

8

Born contribution = contact + direct + exchange terms

invariant Born amplitudes

M++
B (ν, t) = m2

π M+−
B (ν, t) = − e2Q2

2(ν−νB(t))(ν+νB(t))

poles at ν(t) = ±νB(t) = ±t/4mπ

at this level, the pion has no internal degrees of freedom
there is no dispersion of the electromagnetic wave
the polarizabilities vanish



One-Loop Order

at O(p)4: 14 loop diagrams from L2 plus 10 counter terms

L4 =
∑7

i=1 liKi +
∑3

i=1 hi K̄i = 1
4 l1[DµUDµU†]2 + . . .

7 LECs l1...l7 + 3 LECs hi = 10 LECs

(4) (5) (6) (7)

(10) (11) (12) (13)

(8,9)

(14)

+ crossed
   (15-19)

5,6

Figure 2: One–loop diagrams contributing to Z4; the graphs (4, 5) generate the finite loop function
Ḡ(s). The graphs (10 –19) amounts to the replacement M2 → M2

π in the tree result. Graphs (8,
9) stem from the lagrangian L4.

The loop function Ḡ(s) is discussed in appendix A. The physical pion mass squared M2
π

is

M2
π = M2

[

1 +
M2

F 2

(

2lr3 +
1

32π2
ln

M2

µ2

)

+ O(M4)

]

. (5.3)

The pion decay constant F is identified at this order with the physical Fπ. It is a spe-
cific feature of the process γγ → π+π− that, after mass renormalization, the one–loop
contribution from L2 is ultraviolet finite. L4 generates the graphs (8,9) in Fig. 2. This
contribution is proportional to the finite, scale independent combination

l̄∆ = 96π2(2lr5 − lr6) = 2.7 . (5.4)

As is discussed in more detail in section 8.4, there is good agreement with the available
experimental data and the chiral representation (5.2). We now turn to the evaluation of
the contributions at order p6.

6 Evaluation of diagrams at O(p6)

Up to O(p4) one has to deal with only a few Feynman diagrams for the process γγ → π+π−

and the evaluation of the amplitude is straightforward. At O(p6) we have found remarkably
many diagrams. To generate all graphs and to check the combinatorial factor for each of
them, we use a beta–version of the Mathematica package FeynArts 2.0 developed by S.
Kueblbeck and H. Eck [23], where we have included the corresponding Feynman rules
for CHPT, adapted to γγ → π+π−. In Fig. 3 we have plotted the full set of two–loop
diagrams generated by L2. We have not distinguished the different intermediate pions
running in the loops (π1, π2, π3). Each displayed diagram is the generating one for a class
of subdiagrams with the same topology.

6.1 Two–loop diagrams from L2

The genuine two–loop diagrams 22 (vertex), 36,37 (box) and 45 (acnode) in Fig. 3 cannot
be represented as products of one–loop integrals. A method to perform the relevant

9

However, at one-loop order, α± β depends on only 1 LEC:
l∆ = l6 − l5.



Two-Loop Order

At O(p)6:
78 two-loop diagrams from L2

⊗
L2

⊗
L2

38 one-loop diagrams from L2
⊗
L4

plus 57 new counter terms from L6

L6 =
∑57

i=1 ciPi = c1[DµUDµU†]3 + . . .

However, at two-loop order, α± β depends on only 7 LECs:
5 LECs of O(p)4 (l1, l2, l3, l4, l∆ = l6 − l5) and
2 combinations of the 57 ci (a and b)

7 LECS to be determined



Diagrams Two-Loop Order (I)

78 Diagrams built from L2
⊗
L2

⊗
L2

Figure 3: Full set of two–loop diagrams generated by L2. The vertex (22), box (36,37) and
acnode (45) graphs are genuine two–loop diagrams, which do not have a representation in terms
of one–loop functions. The dash–dotted boxes indicate subdiagrams which we have treated in the
dispersive manner. We use symmetry arguments which relate the contributions from the reducible
diagrams (47–97) to mass– and wavefunction corrections at two–loop order. The hatched circles
summarize selfenergy contributions to the pion propagator (graphs (b – d) in Fig. 5).

10



Diagrams Two-Loop Order (II)

38 Diagrams built from L2
⊗
L4

Figure 6: One–loop order contributions generated by the lagrangians L2+L4 with one vertex from
L4. The boxes denote L4– couplings, whereas the numbers indicate the corresponding low–energy
constant.

6.3 Contributions with one vertex from L4

We discuss some aspects of one–loop graphs generated by L2 + L4 with one vertex from
the lagrangian L4 depicted in Fig. 6. Only diagrams proportional to (l1, l2, l5, l6) con-
tribute to the process γγ → π+π−. The low energy constants l3 and l4 enter the two–loop
amplitude through mass– and pion decay constant corrections. The diagrams (98,99) and
(114,115) in Fig. 6 may be generated according to Fig. 4 where the L4–vertex is contained
in the d–dimensional elastic ππ–scattering amplitude at one–loop accuracy. These graphs
remove the subdivergences indicated in Fig. 4 (enclosed by a dash–dotted line in graphs
(22,36) ).
The diagrams (100,101) and (116,117) may be included in the replacement Zπ⊗ seagull
and the graphs (104–113), (120–129) are included in the replacement M2 → M2

π in the
reducible Born diagrams. The remaining graphs require straightforward one–loop calcu-
lation.

6.4 Counterterms with one vertex from L6

The diagrams depicted in Fig. 7 and generated by the lagrangian L6 contribute a polyno-
mial piece only. The divergent parts of the couplings cancel the pole structure generated by
the two–loop diagrams. We have estimated the finite parts of these couplings by resonance
exchange (see below).

14



Diagrams (III)

two-loop from L2 and
one-loop from L4

order 1/F 4
π and can be obtained from the full pion propagator [22].

Two further diagrams are displayed in Fig. 4. The first one - called “acnode”
in the literature - may again be evaluated by use of a dispersion relation, see
[5]. The second one is trivial to evaluate, because it is a product of one-loop
diagrams. The remaining diagrams at order p6 are shown in Fig. 5.

The evaluation of the diagrams was done in the manner described in [5,23]
and invoking FORM [24]. In particular, we have verified that the counterterms
from the Lagrangian L6 [12] remove all ultraviolet divergences, which is a very
non-trivial check on our calculation. Furthermore, we have checked that the
(ultra-violet finite) amplitude so obtained is scale independent.

(1) (2) (3) (4)
(5) (6) (7) (8)
(9) (10) (11) (12)
(13) (14) (15) (16)
(17) 1; 2(18) 1; 2(19)

Fig. 1. A set of two-loop diagrams generated by L2 and one-loop diagrams generated
by L4.

8

one-loop from L4 and
counterterms from L6

l1,2

(1)

l1,2

(2)

l5,6

(3)

ci

(4)

Fig. 5. The remaining diagrams at order p6: one-loop graphs generated by L4, and
counterterm contributions from L6.

5 The two-loop amplitudes

We give the expressions for the amplitudes A and B using the same notation
as in [4]. This results in

A =
1

M2
π − t

+
1

M2
π − u

+
2

F 2
π

{

Ḡπ(s) +
l̄∆

48π2

}

+ UA + PA + O(p4). (5.1)

The unitary part UA contains s, t and u– channel cuts, and PA is a linear
polynomial in s. Explicitly we find,

UA =
1

sF 4
π

Ḡ(s)
[

(2M4
π − 4M2

πs + 3s2)J̄(s) + C(s, l̄i)
]

+
l̄∆

48π2F 4
π

sJ̄(s)

+
(l̄1 − 4

3
)

288π2sF 4
π

(s − 4M2
π)
{

H̄(s) + 4 [ sḠ(s) + 2M2
π(

=

G (s) − 3
=

J (s)) ] d2
00

}

+
(l̄2 − 5

6
)

96π2sF 4
π

(s − 4M2
π)
{

H̄(s) + 4 [ sḠ(s) + 2M2
π(

=

G (s) − 3
=

J (s)) ] d2
00

}

+ ∆A(s, t, u) , (5.2)

with

C(s, l̄i)=
1

48π2

{

1

3

(

l̄1 −
4

3

)

(16s2 − 56M2
πs + 64M4

π)

+
(

l̄2 −
5

6

)

(8s2 − 24M2
πs + 32M4

π)

−12M4
π l̄3 + 12M2

πsl̄4 − 12M2
πs + 12M4

π

}

,

d2
00 =

1

2
(3 cos2 θ − 1) . (5.3)

The loop functions J̄ etc. are displayed in Appendix B, and Ḡπ(s) in Eq. (5.1)
stands for Ḡ(s) evaluated with the physical mass. The term proportional to
d2

00 in UA contributes to D–waves only. For ∆A see below. The polynomial part
is

10

acnode and butterfly diagrams

q1
q2

+ l
q1
q2 ddl ��q1 + l

q2 � l
p1
p2

Fig. 2. Construction scheme for the diagrams in Fig. 1.

q1

q2

p1

p2

+

q1

q2

p1

p2

Fig. 3. A class of one-particle reducible diagrams. The filled in circles summarize
self-energy and vertex corrections.

(1) (2)
Fig. 4. Acnode and butterfly diagrams.
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Loop Integrals

+(100x+ − 41)x3
3 + (51 − 118x+)x4

3 + (42x+ − 19)x5
3

}

−12s(1 − x3)
{

2x+(1 + 2x+) + 2(2 − 12x2
− − 17x+ − 2x2

+)x3

+2(13 − 6x2
− − 11x+)x2

3 − 2(41 − 18x2
− − 89x+ + 8x2

+)x3
3

+(82 − 36x2
− − 194x+ + 28x2

+)x4
3

−2(15 − 6x2
− − 35x+ + 6x2

+)x5
3

}

+48x3(1 − x3)
{

− 2 − 4x+ + (35 − 50x+)x3

+71(2x+ − 1)x2
3 + (61 − 130x+)x3

3 + 2(21x+ − 10)x4
3

}

,

PA; acn(3) = 3(s − ν)2(1 − x3)
5(1 + x3)

+6(s − ν)(1 − x3)
3(3 + 5x3 + 2x2

3 − 2x3
3)

+12x3(1 − x3)(2 − x3)(3 + 3x3 + x2
3 − x3

3) ,

PA; acn(4) = 24(s − ν)2x2
1(1 − 2x1)(1 − x3)

4(2 + x3)

+48(s − ν)x1(1 − 2x1)(1 − x3)
2(2 + 4x3 − 3x2

3)

+96(1 − 2x1)x3(1 − x3)(2 − x3)(2 + 2x3 − x2
3) ,

PA; acn(5) = PA; acn(3)|t↔u ,

PA; acn(6) = PA; acn(4)|t↔u, x1↔x2
,

PA; ver =−8s2(1 − 2x2)x
2
2x

4
3

{

− 54 + 72(3 + 4x2)x3

+(330 − 1134x2 − 811x2
2)x

2
3 − 108(5 − 15x2

2 − 4x3
2)x

3
3

−45x2(18 − 75x2 + 32(3 − x2)x
2
2)x

4
3

}

+32s(1 − 2x2)x
2
2x

4
3

{

33 + 8(27 − 7x2)x3

−3(222 − 30x2 + 55x2
2)x

2
3 − 540(1 − 3x2 + x2

2)x
3
3

+1215(1− x2)
2x4

3

}

,

P
(1)
A; box;+ = 4s2x2

2x
3
3

{

6x1

[

9 − 2(23 + 8x2)x3 − (67 − 405x2 + 31x2
2)x

2
3

+(70 + 39x2 − 808x2
2 + 20x3

2)x
3
3

+9(6 − 61x2 + 53x2
2 + 60x3

2)x
4
3 − 81x2(3 − 10x2 + 8x2

2)x
5
3

]

+3x2
1x2x3

[

− 92 − 171x3 + 592x2x3

+(231 + 4(194 − 339x2)x2)x
2
3

+9(1 − 2x2)(71 − 22x2 − 60x2
2)x

3
3

26

+27(1 − 2x2)
2(11 − 16x2)x

4
3

]

− 2x3
1x

2
2x

2
3

[

245 + (1 − 2x2)x3

×(470 + 27(1 − 2x2)x3(15 + 8(1 − 2x2)x3))
]

+6x3(−19 + 24x3 + 35x2
3 − 36x3

3

+x2
2x3(−25 + 40x3 + 27(5 − 6x3)x

2
3)

+x2(10 + 44x3 − 199x2
3 + 9x3

3(8 + 9x3)))
}

+12ν2x3
2x

4
3

{

− 20 − 16x1(2 + 7x1)

+
[

48 + 50x2 + 310x1 + 101x2
1 + 30x1(3 + 15x1 − 5x2

1)x2

]

x3

+
[

− 78 + 2x1 + 411x2
1 − 20(9 + 63x1 + 57x2

1 + 13x3
1)x2

+120x1(1 + x1 + 5x2
1)x

2
2

]

x2
3 − 3

[

24 + 3x1(94 + 73x1)

−2(69 + 351x1 + 381x2
1 + 19x3

1)x2

+4x1(24 + 117x1 + 34x2
1)x

2
2

]

x3
3

+9(1 − 2x2)
[

18 + 54x1 − 36x1x2 + x2
1(33 − 2(9 + 8x1)x2)

]

x4
3

}

−48sx2x
2
3

{

− 6 +
[

18 + 20x2 − 31x1x2

]

x3

−
[

29 + 49x2 + 4x2
2 + 4x1x2(9 − (22 − 8x1)x2)

]

x2
3

+
[

− 6 + 202x2 − 54x2
2 + 164x1x2

+114x1x
2
2 − 4x1x

3
2 − x2

1x
2
2(149 − 58x2)

]

x3
3

+
[

65 − 333x2 − 40x2
2 + 189x1x2 − 4x1(137 + 75x2)x

2
2

+5x2
1x

2
2(23 + 12x2(5 + x2))

]

x4
3

−9
[

4 − 46x2
2 − x2

1x
2
2(1 − 2x2)(41 + 8x2)

+x1x2(25 + 18x2 − 76x2
2)
]

x5
3

+81x2(1 − 2x2)
[

2 − 3x1 + x1(2 + x1)x2 − 2x2
1x

2
2

]

x6
3

}

+96x2x
2
3

{

− 21 +
[

36 + 65(1 − x1)x2

]

x3

+
[

23 − 8(23 − x1)x2 + 176x1x
2
2

]

x2
3

−2
[

6 − (83 + 37x1)x2 + 120x1x
2
2

]

x3
3

−
[

29 + 10(17 − 7x1)x2 − 100x1x
2
2

]

x4
3

−9
[

8 − (31 + x1)x2 + 32x1x
2
2

]

x5
3 + 81(1 −2x2)(1 − 2x1x2)x

6
3

}

,

P
(1)
A; box;− = −8sνx2

2x
3
3

{

27x1 −
[

57 + 6x1(13 + (26 + 51x1)x2)
]

x3

+
[

72 − 129x1 + 3(68 + x1(456 + 25x1))x2

+x1(282 + x1(1383 − 470x1))x
2
2

]

x2
3

27

Final results expressed by many
loop integrals and polynomials.
Simple loop integrals Ik(t) given
by analytic expressions for all
values of t, complex for t ≥ 4m2

π.
In some cases, single or double
integrals to be evaluated by
numerical integration. These
involve rather messy polynomials
(see left!)



Polarizabilities of Charged Pion

απ+ ± βπ+ = αfs/(16π2F 2
πmπ){c1± + m2

π/(16π2F 2
π )d1± +O(m4

π)}

c1+ = 0, c1− = l∆

d1+ = −4
9`2 + 53

54`− 2
9`l1− 2

3`l2− 2
9 l1− 2

3 l2− 91
162−

8105
576 + 135

64 π2 +8b

d1− =
−4

3`l1+
4
3`l2− 4

3`l∆+ 4
9 l1+

4
9 l2− 1

3 l3+
4
3 l4l∆− 187

81 + 41
432−

53
64π2+a+8b

` = ln(m2
π/µ2), with µ the scale of the renormalization

O(p4): exact cancelation of all loops in forward direction
in backward direction remarkable reduction of 16 diagrams
to ONE LEC (l∆)

O(p6): large cancelations among scale dependent log terms,
LECs O(p4), LECs O(p6), and constants



How to Determine the LECs??

I O(p4):
only ONE LEC, l∆ = l6 − l5 = 3.0± 0.3
l6 ↔ vector form factor (< r2 >π

V )
l5 ↔ radiative pion decay (π → e + ν + γ)
pion polarizability and weak current V − A related

I O(p6)
4 more LECs O(p4):
l1 = −0.4± 0.6 and l2 = 4.3± 0.1 ↔
ππ scattering and Ke4 decay (K+ → π+π−e+νe)
l3 = 2.9± 2.4 ↔ SU(3) mass formula,
l4 = 4.4± 0.2 ↔ FK/Fπ

2 new LECs O(p6):
a = −5± 5 and b = 0.4± 0.4 ↔ resonance saturation
(ρ, a1, b1, . . .).

I LECs have large error bars, but their contributions are small



Cross Section

σ(Wt) for |cosθ| ≤ 0.6
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 |cos(θ)| < 0.6

Fig. 6. The γγ → π+π− cross section σ(s; | cos θ| ≤ Z = 0.6) as a function of
√

s.
The experimental data are taken from [25].

6 Pion polarizabilities: dipole and quadrupole

The dipole and quadrupole polarizabilities are defined [26,27] through the ex-
pansion of the helicity amplitudes at fixed t = M2

π ,

α

Mπ

H+∓(s, t = M2
π) = (α1 ± β1)π+ +

s

12
(α2 ± β2)π+ + O(s2) , (6.1)

where H+∓ denote the helicity amplitudes H̄+∓ with Born-term subtracted.
Because we have at our disposal the helicity amplitudes at two-loop order, we
can work out the polarizabilities to the same accuracy. It turns out that all
relevant integrals can be performed in closed form. We discuss the results in
the remaining part of this Section.

6.1 Chiral expansion

Using the same notation as in [4], we find for the dipole polarizabilities

(α1 ± β1)π+ =
α

16 π2 F 2
π Mπ

{

c1± +
M2

π d1±

16 π2 F 2
π

+ O(M4
π)

}

, (6.2)

12

Wt(MeV)

Ref. GIS, data from J. Boyer et al. (MARK II, SLAC), PRD 42 (1990)

♠ polarizabilities related to DIFFERENCE between tree and loop
♥ two-loop corrections � experimental errors



Extrapolation of Helicity Non-Flip Amplitude
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Fig. 7. The helicity non-flip amplitude H++ in units of M2
π as a function of s, at

t = u, with Born term subtracted. For s ≤ 4M2
π the quantity shown is 102M2

πH++,
and for s ≥ 4M2

π we display 102M2
π |H++|. The solid (dashed) line is the expression

to two loops (to one loop). The Compton threshold in γπ± → γπ± and the threshold
in γγ → π+π− are denoted by the encircled letters C and A, respectively. It is clearly
seen that two-loop corrections are suppressed at the Compton threshold.

Table 4
The amplitude 102M2

πH++(s, t = u) at the Compton threshold s = 0 and at
s = 4M2

π . The contribution from chiral logarithms, listed in the fourth column,
is included in the two-loop result quoted in column three. The normalization is
NH = 102M2

π . The LECs at order p6 are the ones from Eq. (3.10).

NHH++(s, t = u) to 1 loop to 2 loops chiral logarithms

s = 0 2.89 2.77 −0.35

s = 4M2
π 7.13 8.80 1.28

find that chiral logarithms contribute with ≃ 4.5×10−4 fm5 at two-loop order.
These logarithms are, of course, independent of the LECs at order p6.

Finally, we have checked whether there are potentially large contribution to
H++ at order p8. Using the same procedure as in [5], we found that all contri-
butions from resonance exchange with masses below 1 GeV have a negligible
effect - we do not quote the corresponding numbers here.

16

t = W 2
t [m2

π]
solid: 2-loop, dashed: 1-loop (ChPT prediction of Ref. GIS)

A: (γγ → ππ)thr at t = 4 m2
π, C: (γπ → γπ)thr at t = 0, s = m2

π

♥ two-loop corrections drop from cusp effect at A
to near zero values at C (Compton threshold)

♥ scale-dependence through chiral logs very small at C



Forward dispersion relations
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I forward DR (at t = 0 or θ = 0◦)
in complex plane ν = E lab

γ

⇒ Compton amplitude at
threshold (ν = 0, t = 0)

I within red hatched triangle,
amplitude real, no singularities
(except for pole terms)

I within circle about origin and
fitting into triangle, amplitude
F (ν2, t) given by Taylor series

I F (0, 0)⇒ Thomson scattering
∂/∂ν2 F (ν2, 0)|ν=0

⇒ forward polarizability



Contour for forward DR

−νthr

.. .
thrν

Im(  )ν

Re(  )ν

u=0s=0

I Cauchy integral

F (0) = 1
2πi

∮
F (ν′) dν′

ν′

along small circle with radius ε
about ν = 0

I Step 2: extend contour until it
hits non-analytic structures or
infinity

I Step 3: add contributions from
cuts, poles, or infinity

(“big circle” R →∞)

dispersion relations in particle physics

I (i) |F |2 should be integrable along Im ν=const

⇒ no contribution from “infinity”
I (ii) F should be an analytic function on “physical sheet” except for

square-root singularities at particle production thresholds:
s-channel cut νthr ≤ Re(ν) < ∞, u-channel cut −∞ < Re(ν) ≤ −νthr

I Because FK ansatz yields unphysical cuts starting at s = 0 and u = 0,

FK ignore respective imaginary parts. Result: non-analytic amplitudes.
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Model of Fil’kov and Kashevarov

spectral function ⇒ mesons (ρ, ω,Φ, a1, a2, b1, σ, f0, f2).

vector (V) and axial vector (A) contributions to amplitudes:
(1) M++

V (s) = −s M+−
V (s), M++

A (s) = +s M+−
A (s).

polarizabilities defined at Compton threshold (s = m2
π):

(2) α + β = mπ/(2π) M+−(m2
π), α− β = 1/(2πmπ)M++(m2

π)

Combining Eqs. (1) and (2) we find:
(3) (αV − βV )/(αV + βV ) = −1, (αA − βA)/(αA + βA) = +1

⇒ αV = 0, βA = 0

as expected from any diagrammatic approach:
pion (0−) + Photon (M1 = 1+) → vector meson (1−)
pion (0−) + Photon (E1 = 1−) → axial vector meson (1+)
M1 transition ⇒ magnetic polarizability β
E1 transition ⇒ electric polarizability α



Results of Fil’kov and Kashevarov

Table: Polarizabilities according to Ref. FK, in units of 10−4 fm3

α− β α + β α β α−β
α+β

π+ ρ M1 −1.15 0.063 −0.54 0.61 −18.3
a1 E1 2.26 0.051 1.16 −1.10 44.3
b1 E1 0.93 0.021 0.48 −0.45 44.3
a2 M2 1.51 0.031 0.77 −0.74 48.7

π0 ρ M1 −1.58 0.080 −0.75 0.84 −19.8
ω M1 −12.56 0.721 −5.92 6.64 −17.4



Energy dependence of width and coupling

vector (V) and axial vector (A) contributions to amplitudes:

M+−(s) = 4 g(s)2

M2−s−iMΓ(s)

M++
V (s) = −s M+−

V (s), M++
A (s) = +s M+−

A (s).

¶ energy-dependent width (P wave ∼ q3 @ threshold)

Γ(s) = ( s−4 m2

M2−4 m2 )
3/2 Γ0

Γ0 width at resonance, s = M2

¶ energy-dependent coupling constant (s−1/2 singularity @ s = 0)

g(s)2 = 6πM
s1/2 ( M

M2−m2 )
3 Γγ

Γγ partial decay width for meson → πγ



Singularities of FK model
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I unphysical singularities at s = 0,
t = 0, u = 0, very close to
Compton threshold.
singularities are introduced to
ensure square integrability of
amplitudes
Titchmarsh theorem ⇒ Re and
Im are Hilbert transforms

I singularities lead to unphysical
cuts
imaginary parts “below physical
threshold” set zero

I result: non-analytic function,

Titchmarsh theorem annulled



Polemics: contour plots for ρ contribution

Im[M+−(s = x + iy)] ⇒ α + β
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Im[M++(s = x + iy)] ⇒ α− β
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I physical cut with maximum near x = M2 ≈ 0.55GeV2

I unphysical (left-hand) cut with “bound state” near −11 GeV2

I α± β determined at {x = m2, y = 0}, “squeezed in between cuts”

I α− β (right plot): physical ρ dwarfed by unphysical phenomena



Integrands for α± β
as function of x = Re(s) in units GeV 2

-0.2 0.2 0.4 0.6

0.10.1

0.3

Integrand for Α+Β

α + β = 0.17 (l.c.) + 0.03 (r.c.)
= +0.20

-1 -0.5 0.5 1

-4

-2

2
Integrand for Α-Β

α− β = 0.98 (l.c.)− 1.18 (r.c.)
= −0.20

With all contributions taken care of, the amplitude has the
properties of a ρ meson, α = 0, β = 0.20. Neglect of left cut
violates the spin-parity properties of ρ meson.



Contributions to electric (α) and magnetic (β) polarizabilities
for ρ meson with several resonance models

A =̂ pole at M − iΓ0/2, B =̂ pole at M − iΓ(s)/2, C =̂ Γ(s)2 → 0

{A0, B0, C0} =̂ g(M2), {A, B, C} =̂ g(s)

α + β

real r.c. l.c. rest

A0 0.04 0.04 0.00 −
B0 0.04 0.03 − 0.01
C0 0.04 0.03 − 0.00
A 0.20 0.05 0.15 −
B 0.20 0.03 0.17 0.00
C 0.20 0.03 0.17 −

α− β

real r.c. l.c. rest

A0 −0.04 −1.04 −0.08 1.08
B0 −0.04 −1.15 − 1.11
C0 −0.04 −1.93 − 1.89
A −0.20 −1.06 0.86 −
B −0.20 −1.02 0.81 0.01
C −0.20 −1.18 0.98 −

Numbers in units of 10−4 fm3.
First column: Model, second column: values from real part of amplitudes
further columns: contributions from Cauchy integral (r.c. and l.c. = integrals
along right and left cuts, rest= residues of poles and “big circle”).

Note: Sum of dispersive contributions ≡ real part.



Dispersion relations à la Omnès

In region of elastic pion scattering, final-state interaction described
by pion-pion phase shift δI

J with I=isospin, J=angular momentum

Omnès function ΩI
J(t) = exp

{
t
π

∫∞
4m2

π
dt ′

δI
J(t

′)
t′(t′−t−iε)

}
To determine α− β, need helicity-conserving dispersive amplitude,
full amplitude A minus Born amplitude B.
(AI

J − B I
J)/ΩI

J has only right cut 4mπ2 < t <∞ and fulfills DR
(simplified for S wave, J=0):

AI
0(t) = ΩI

0(t)

{
B I

0(t)Re[(ΩI
0(t))

−1]− 1
π

∫∞
4m2

π
dt ′

B I
0(t

′)Im[(ΩI
0)
−1(t′)]

t′−t

}
Connected with polarizability at t = 0 (Compton threshold:

α− β = − 1
4πmπ

(
AV (m2

π, 0)− 1
π

∫∞
4mπ2

dt ′
HI

00(t
′)Im[(ΩI

0)
−1(t′)]

t′

)
Note: δ0

0 (S wave, Isospin 0) is positive and large compared to
other partial waves.
Dispersion integral over region up to 800 MeV yields α− β ≈ 5.5
for both pions (Ref. PDS).
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FIG. 5. The total cross section for γ γ → π+ π− as a function of
the c.m. energy Wππ = √

t in the low-energy region, as obtained from
the unitarized generalized Born term (including the ρ and ω contribu-
tions). (Solid line) Unsubtracted DRs. (Dashed line) Subtracted DRs
with the subtraction constants given by the polarizabilities predicted
by the two-loop calculation of ChPT. (Dotted line) Subtracted DRs
with the subtraction constants given by the polarizabilities obtained
from unsubtracted DRs by Ref. [12], except that the vector meson
contribution is calculated with an energy-independent coupling
constant gV (M2

V ). The data are from Boyer et al. [30].
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FIG. 6. The total cross section for γ γ → π+ π− as a function
of the c.m. energy Wππ = √

t including the high-energy region
dominated by the f2 resonance. Data are from the collaborations
MARK-II [30], CELLO [31], and BELLE [32]. The error bars show
only the statistical errors. Further notation is as in Fig. 5.
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FIG. 7. The total cross section for γ γ → π 0 π 0 as a function of
the c.m. energy Wππ = √

t in the low-energy region. The data are
from Marsiske et al. [33]. Further notation is as in Fig. 5.

S-wave amplitude [see Eq. (32)]. We note that all the results
are obtained with an energy-independent coupling constant
gV (M2

V ). The same results are shown over a larger energy
region in Fig. 6. The f2 resonance contribution is clearly
visible near Wππ = 1.2 GeV. However, the contribution of
this resonance to the polarizability is very small, as has been
noted before.

The corresponding results for the γ γ → π0π0 cross section
are shown in Fig. 7. For this reaction the differences among
the models are much more pronounced, and at energies above
the f2 resonance the discussed method fails completely, most
likely because of the inelasticities due to more-pion and heavier
systems. To highlight the importance of the vector mesons,
Fig. 8 presents the results of the previous figure without
the vector meson contributions. A correct unitarization of
the full amplitude will be required to describe the higher-
energy region. Such a more consistent treatment has been
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FIG. 8. The total cross section for γ γ → π 0 π 0 as a function of
the c.m. energy Wππ = √

t in the low-energy region, as in Fig. 7 but
obtained by unitarization of the Born terms, i.e., neglecting the vector
meson contributions. The data are from Marsiske et al. [33]. Further
notation is as in Fig. 5.
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(π0π0) data from Marsiske

solid: unsubtracted DR à la Omnès
(integration up to 800 MeV)

dashed: subtracted DR
subtraction constant 5.7/-1.9 (GIS)

dotted: subtracted DR
subtraction constant 13.6/-3.5 (FK)

♠ prediction of ChPT in reasonable
agreement with the data

♠ (π+π−):
large Born term, dispersive contribution
less than 10% of cross section,
comparable to experimental errors

♠ (π0π0):
unsubtracted DR does not work well

no good prediction for neutral pion



What about higher energies?
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obtained by unitarization of the Born terms, i.e., neglecting the vector
meson contributions. The data are from Marsiske et al. [33]. Further
notation is as in Fig. 5.
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Polarizability of the pion

I The polarizabilities are a fundamental property of a particle,
and the pion is a basic building block of hadronic physics.

I A wide-spread range of values has been found by several
analyses of different experiments.

I Within the framework of ChPT, the polarizabilities have been
calculated at the 2-loop order. At least for the charged pion,
the convergence of the loop expansion looks very good.

I We do not find a discrepancy between ChPT and DR.

I COMPASS claims to come up with a precise determination of
the pion backward polarizability (απ − βπ) from data taken in
2009, with values to be released soon. In particular, these
data may challenge the earlier findings of the Serpukhov
experiment. It is encouraging to learn that future
COMPASS-II work is planned with significantly increased
statistics, in order to (i) determine απ and βπ independently,
and (ii) get a first look at the Kaon polarizability.
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