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Introduction

» « = electric polarizability, 5 = magnetic polarizability
units: 10~*fm3
forward polarizability of pion, a + 3
backward polarizability of pion, o — 3
> Prediction of ChPT at O(p°) [GIS]:
Opt + B+ =016 +0.1, o+ — B+ =574+1.0
» Prediction of Ref. [FK]:
Opt + Bt =017 +0.02, ap+ — G+ =13.60+2.15



Experimental Information and Data Analysis Backward

polarizability a,+ — 3+ in units of 10~* fm>

l reaction [ analysis [experiment] [ A+ — Bt
n~Z — yn~ Z | Serpukhov (1983) 156+64+44
COMPASS(2017) L7177
p— T n Lebedev (1984) 40+ 24
Mainz (2005) 116+15+3.0+05
st D. Babusci et al. (1992)

[PLUTO (1984)]

38.2+9.6+11.4

[MARK Il (1990), CBC (1990)]

[DM1 (1986)] 344492
[DM2 (1987)] 52.6+14.8
[MARK 11 (1990)] 44432
J.F. Donoghue & B. Holstein (1993) | 5.4
[MARK 11 (1990)]

A. Kaloshin & V. Serebryakov (1994) | 5.25 4 0.95

L. Fil'kov (2005)

[TPC/2~ (1986),MARK 1l (1990)]
[CELLO (1992), VENUS (1995)]
[ALEPH (2003), BELLE (2005)]

13.0 (+2.6, —1.9)




Compton Scattering: Kinematics
v(k) + 7(p) = v(K') + 7(p)
3 Mandelstam variables:

s=(k+p)? t=(k—Kk)? u=(k-p)?
(constraint s + t + u = 2m2)

Mandelstam plane: Xing-symmetric v = (s — u)/(4m;) and t

E, +t/(4m;) = 3(E, + E!)

(v, t) < photon lab energies E, and Eff and lab scattering angle 6:
vV =
t = —4E, E]sin*(0/2) = —2m.(E, — E})

Scattering matrix has 2 independent amplitudes:
M+~ (v, t) helicity-flip, forward scattering, = o + 3
M*+(v, t) NO helicity-flip, backward scattering, = a — 3
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Physical regions in Mandelstam plane

o
~

» red hatched:
physical regions
Y+y—oTm+T
Y+rmT =yt

» two-pion thresholds
at s=4m2, u=4m2,
t= 4mfr

» DR integration paths
t =0 (forward),

6 = 180° (backward)

— 2 c— m2
u=mz, s=mg, ...
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Chiral Perturbation Theory

pion-pion interaction at low energies ruled by
chiral symmetry of QCD

xPT systematic expansion in small momenta and
symmetry-breaking terms (quark/pion mass)

chiral symmetry requires derivative coupling
> Lo =S [D,UDHUT + m2(U + UT)]

> electroweak interaction added by covariant derivative:

DU =0,U—ie(Q:U—-UQr)A,
Fr=decay constant, m,=mass, Q,=charge



Tree Diagrams

Born contribution = contact + direct + exchange terms

invariant Born amplitudes

62Q2
2(v—vg(t))(v+ve(t))
poles at v(t) = +vp(t) = £t/4m,

ME* (v, t) = m2 M~ (v, t) = —

at this level, the pion has no internal degrees of freedom
there is no dispersion of the electromagnetic wave
the polarizabilities vanish



One-Loop Order

at O(p)*: 14 loop diagrams from L, plus 10 counter terms
L4 = ZI?:]_ K + Z?:l h,’/’_(,' = %/1[D“UD“UT]2 + ...
7 LECs fy...I7 + 3 LECs h; = 10 LECs

o R

4 (5) (6) (] (8.9)
+ crossed
(15-19)
(10) (11) (12) (13) (14)

However, at one-loop order, o + (3 depends on only 1 LEC:
In=1s— .



Two-Loop Order

At O(p)°:

78 two-loop diagrams from Lo Q) L2 Q) L2
38 one-loop diagrams from Lo Q) L4

plus 57 new counter terms from Lg

Le=33", ciPi=calD,UDFUTE + ...

However, at two-loop order, a & 3 depends on only 7 LECs:
5 LECs of O(p)4 (/1, /2, /3, /4, /A = /6 — /5) and
2 combinations of the 57 ¢; (a and b)

7 LECS to be determined



Diagrams Two-Loop Order (1)

78 Diagrams built from £ Q) L2 Q) L2

23)

o< 0¢ X X

(3637) @8 @9)

:@zmg::m@m

(40) 1) (nz) (a4)

+orassec
(57-65)
(48) 7 (4@ -50) (5| 53) (54-58)

(68) [67] ::ng:
+ crossed
(74-81)
Z:i\i\z)g ) i (73)

+ crossed
(90-97)
@6



Diagrams Two-Loop Order (1)

38 Diagrams built from £, Q) L4
:KK ‘% (101) (102)
i + crossed
(108-113)

(105 (106) (107 (108)
(114 (115) 115 117 (118) 119)
+ crossed
(125-128)
(120) (121 (122 (123 (124)

(131 (134} (136)



Diagrams (l11)

two-loop from L, and one-loop from L4 and
one-loop from L4 counterterms from Lg

S
S i b R

:?O% }Og ¥“6< ::@< acnode and butterfly diagrams
(12)

(10) (11)
(13 (14) 15) (16)
m @

()

(1)
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Loop Integrals

o = st {601[9 = 2(23 + Saa)ag — (67 — 4052, + 31ad)a}
(70 + 392> — 8083 + 203)a3
96— 61z + 5373 + 6008)§ — S1a2(3 — 102 + 823)a3]
3tz — 92 = 171y + 592057,
+(231 + 4(194 — 339 2)a3
FO(1 — 2,)(T1 — 2225 — 603)a
+27(1 = 222)2(11 — 1625)a] — 203033245 + (1 = 22523
(470 + 27(1 = 2)5(15 + 8(1 = 22)a3))]
+61:3(—19 + 245 + 3 363
(=25 + 405 + 27(5 — 6z3)a3)
+2(10 + 44y — 19903 + 923(8 + 95))) }
H120%3ad{ - 20 = 1601(2 + Tan)
—{ﬁw ’:lhz+$1lu,+1Ul:;’+3(h|1ji+lﬁ.”7G:f)vgJ.:,

7[77‘”21.+411x§720(<)+u‘;y.+57Jf+1‘h,‘>u
1202 (1 + 2y + 58) 8] — 3[24 + 3y (94 + T3,
—2(69 + 351z, + 3812] + 1923)z

(24 4+ 1172y + :uy;’)y;].g

+9(1 2'2)[15 b 5dary — 36105 + 23(33 — 2(9 4 «‘(r‘)»)):»i}
—\es\..zr[{—(, + [m + 2072—:“«.,4..;

ﬂ-zsw 495 + 422 + 4y 25(9 — (2275.”)..11}.2,
7[4;”(»2127541;41(;41,12
H1layf — Ay — 233149 — 581,) |}

+[65 — 3332 — 4073 + 1892105 — 4o, (137 + To)
25+ 2))] o

+5atas (2 2
—9[4 — 4603 — 2323(1 — 222)(41 + 82)

+aywa(25 + 187, — T623) |
+8125(1 — 202)[2 = 31 + 21 (2 + 1)z — 2a3a3]af}
+96w,03{ — 21+ [3(;+‘ss(17“)._,]“
+[23 - 8(28 = w1)ay + 1762,0] 3
—2[6— (83 + 57a1) + 1200128}
—[294 10017 = 72 )2 — 100134
O[8 — (31 + aa)as + 82ry3] ] + 81(1 —2r)(1 — 2ma)af),

Final results expressed by many
loop integrals and polynomials.
Simple loop integrals /,(t) given
by analytic expressions for all
values of t, complex for t > 4m?2.
In some cases, single or double
integrals to be evaluated by
numerical integration. These
involve rather messy polynomials
(see left!)



Polarizabilities of Charged Pion

Ot % B = o /(1672 FEmy){cre + m2 /(1672 F2) dis + O(m7)}

Ci+ — 0, Ci— = /A
diy = _362"‘ g%(" - %”1 - %”2 - %/1 2/2 162 8517065 + 16345 +8b
di_ =

—%ﬁ/l—i—%(T/z—%f/A—}—g/l—Fg/z—%/3+%/4/A 187—}—@—@71'2—{—3—}—8[)
¢ = In(m2/p?), with u the scale of the renormalization
O(p*): exact cancelation of all loops in forward direction

in backward direction remarkable reduction of 16 diagrams
to ONE LEC (/a)

O(p®): large cancelations among scale dependent log terms,
LECs O(p*), LECs O(p®), and constants



How to Determine the LECs??

> O(p*):
only ONE LEC, In =/ — 5 =3.0+0.3
lo < vector form factor (< r? >T))
Is < radiative pion decay (7 — e + v +7)
pion polarizability and weak current V — A related
> O(p°)
4 more LECs O(p*):
h=-04+06and h=43+0.1 <
7 scattering and Keq decay (KT — mhretr)
I3 =2.9+2.4 < SU(3) mass formula,
Is =44+02 < Fx/F;
2 new LECs O(p®):
a=-5+5and b =0.44+0.4 < resonance saturation
(p, ai, bl, .. )
» LECs have large error bars, but their contributions are small



Cross Section
o(W;) for |cosf| < 0.6

400 — ‘ ‘ —

w

S

S
I

cross section [nb]
T

N

o

S
I

| cos(8)| < 0.6

PR N N S O S R SR SO SR ENN R S S S H R S S
350 300 350 400 450 500
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Ref. GIS, data from J. Boyer et al. (MARK II, SLAC), PRD 42 (1990)

& polarizabilities related to DIFFERENCE between tree and loop
O two-loop corrections < experimental errors



Extrapolation of Helicity Non-Flip Amplitude
|Hyt| [100 m2]

AMPLITUDE
4 6
T T

£

— W2 2
t= Wt [m7r]
solid: 2-loop, dashed: 1-loop (ChPT prediction of Ref. GIS)
A: (vy = 7 )ene at t = 4m?, C: (ym = y7)tnr at t =0, 5 = m2
O two-loop corrections drop from cusp effect at A
to near zero values at C (Compton threshold)
( scale-dependence through chiral logs very small at C



Forward dispersion relations
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forward DR (at t =0 or § = 0°)
in complex plane v = E}f‘b

= Compton amplitude at
threshold (v =0,t = 0)
within red hatched triangle,
amplitude real, no singularities
(except for pole terms)

within circle about origin and
fitting into triangle, amplitude
F(v?,t) given by Taylor series
F(0,0) = Thomson scattering
9/0v? F(v2,0)],—0

= forward polarizability



Contour for forward DR

Im(v)

» Cauchy integral

O) = 27rl f F( ' dV
along small circle Wlth radius e
about v =0

» Step 2: extend contour until it

hits non-analytic structures or
infinity

» Step 3: add contributions from
cuts, poles, or infinity
(“big circle” R — o0)

dispersion relations in particle physics
» (i) |F|? should be integrable along Im v=const
= no contribution from “infinity”
» (ii) F should be an analytic function on “physical sheet” except for

square-root singularities at particle production thresholds:
s-channel cut vgnr < Re(v) < oo, u-channel cut —oo < Re(v) < —vhr



Contour for forward DR

Im(v)

» Cauchy integral

O) = 27rl f F( ' dV
along small circle Wlth radius e
about v =0

» Step 2: extend contour until it

hits non-analytic structures or
infinity

» Step 3: add contributions from
cuts, poles, or infinity
(“big circle” R — o0)

dispersion relations in particle physics
> (i) |F|? should be integrable along Im v=const

= no contribution from “infinity”
» (ii) F should be an analytic function on “physical sheet” except for
square-root singularities at particle production thresholds:
s-channel cut vgnr < Re(v) < oo, u-channel cut —oo < Re(v) < —vhr
» Because FK ansatz yields unphysical cuts starting at s =0 and u =0,

FK ignore respective imaginary parts. Result: non-analytic amplitudes.



Model of Fil’kov and Kashevarov

spectral function = mesons (p,w, P, a1, a2, b1, 0, fy, 2).

vector (V) and axial vector (A) contributions to amplitudes:

(1) Mit(s)=—sM}~(s), Mit(s)=+sM; (s).
polarizabilities defined at Compton threshold (s = m?):

(2) a+pB=m/r)M=(m2), a-p=1/2rm;)M*(m2)
Combining Egs. (1) and (2) we find:

(3) (av —=pv)/(av+8v)=-1, (aa—pa)/(aa+Ba)=+1

=ay=0, [Ba=0

as expected from any diagrammatic approach:

pion (07) + Photon (M1 = 1%) — vector meson (17)
pion (07) + Photon (E1 = 17) — axial vector meson (17)
M1 transition = magnetic polarizability

E1 transition = electric polarizability «



Results of Fil’kov and Kashevarov

Table: Polarizabilities according to Ref. FK, in units of 10~* fm?3

a—f a+B| a B | 25
7t | p | M1 —1.15 0.063 | —0.54 0.61 | —18.3
a | E1 2.26  0.051 1.16 —1.10 44.3

by | E1 0.93 0.021 0.48 —-0.45 44.3

ay | M2 1.51 0.031 0.77 —-0.74 48.7
7 [ p | M1 —1.58 0.080 | —0.75 0.84 | —19.8
w | M1 | —1256 0.721 | —5.92 6.64 | —17.4




Energy dependence of width and coupling

vector (V) and axial vector (A) contributions to amplitudes:
- 4g(s)’
M+~ (s) = M2—Sg—(?/3/,r(5)
MEH(S) = —s My (s), M (s) = +s M (s).

q energy-dependent width (P wave ~ g* @ threshold)
r(s) _ ( s—4 m? )3/2 o

M?2—4 m?
o width at resonance, s = M?

q energy-dependent coupling constant (s~ /2

2 _ 6rM 3
g(S) - 571r/2 (Mz ) r
Iy partial decay W|dth for meson — 7y

singularity @ s = 0)




t(GeV?)

Singularities of FK model

» unphysical singularities at s = 0,
t=0, u=0, very close to
Compton threshold.
singularities are introduced to
ensure square integrability of
amplitudes
Titchmarsh theorem = Re and
Im are Hilbert transforms

» singularities lead to unphysical
cuts
imaginary parts “below physical
threshold” set zero

» result: non-analytic function,

Titchmarsh theorem annulled




Polemics: contour plots for p contribution

Im[MT(s=x+iy)] = a+ Im[MTH(s=x+1iy)] = a—p

-12 -10 -8 -6 -4 -2 O 2 -12 -10 -8 -6 -4 -2 0 2
X X
» physical cut with maximum near x = M? ~ 0.55GeV?
» unphysical (left-hand) cut with “bound state’ near —11 GeV?
> o= (3 determined at {x = m? y = 0}, “squeezed in between cuts”
| 4

a — (3 (right plot): physical p dwarfed by unphysical p%enomgna -

it
N)
yel
)



Integrands for o + 3
as function of x = Re(s) in units GeV 2

Integrand for a+p Integrand for a—p8
2
: R
-1 -0.5 0.5
0.1 2
-0.2 0.2 0.4 0.6 4
a+ 3 =0.17 (Lc.) 4+ 0.03 (r.c.) a—(3=0.98 (lL.c.) —1.18 (r.c.)
= +0.20 = —0.20

With all contributions taken care of, the amplitude has the
properties of a p meson, a = 0, § = 0.20. Neglect of left cut
violates the spin-parity properties of p meson.



Contributions to electric (o) and magnetic (3) polarizabilities
for p meson with several resonance models
A = pole at M — il4/2, B = pole at M — il(s)/2, C 2 T(s)> =0
{A0, B0, C0} = g(M?), {A,B,C} = g(s)

a+pf a—f
real | r.c. l.c. | rest real r.c. l.c. rest
0.04 | 0.04 | 0.00 | — —0.04 | —1.04 | —0.08 | 1.08
0.04 | 0.03| — |o0.01 —0.04 | —1.15 — 1.11
0.04 | 0.03 | — |0.00 —0.04 | —1.93 — 1.89

0.20 | 0.05 | 0.15 | —
0.20 | 0.03 | 0.17 | 0.00
0.20 | 0.03 | 0.17 | —

—0.20 | —1.06 | 0.86 —
—-0.20 | —1.02 | 0.81 | 0.01
—-0.20 | —1.18 | 0.98 —

(SYe VIS SRR

(S Ye VIS P

Numbers in units of 10™* fm3.

First column: Model, second column: values from real part of amplitudes
further columns: contributions from Cauchy integral (r.c. and l.c. = integrals
along right and left cuts, rest= residues of poles and “big circle”).

Note: Sum of dispersive contributions = real part.




Dispersion relations a la Omnes

In region of elastic pion scattering, final-state interaction described
by pion-pion phase shift 55 with /=isospin, J=angular momentum

e
Omnes function Q’J(t) = exp{fr f4O:,2 dt’%

To determine oo — (3, need helicity-conserving dispersive amplitude,
full amplitude A minus Born amplitude B.

(Al — B1)/Q!, has only right cut 4m,> < t < oo and fulfills DR
(simplified for S wave, J=0):

_ 00 B! () Im[(QL)~1(t
Aj(e) = 93(0{8&&)%[(%&)) 12 foe, dy B )
Connected with polarizability at t =0 (Compton threshold:
I Nm IN—1(41
o — ﬁ = 47rm7r <AV m 0 f4m <2 OO(t )I E_-(/QO) (t )]>
Note: 49 (S wave, Isospin 0) is positive and large compared to
other partial waves.

Dispersion integral over region up to 800 MeV vyields o — § ~ 5.5
for both pions (Ref. PDS).




Cross sections

W, (Gev)

(mt7~) data from Boyer

RV )

O, ([cos(B,)[ < 0.8) (nb)

\
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W, (GeV)

(7°7°) data from Marsiske

solid: unsubtracted DR a la Omnes
(integration up to 800 MeV)

dashed: subtracted DR
subtraction constant 5.7/-1.9 (GIS)

dotted: subtracted DR
subtraction constant 13.6/-3.5 (FK)

& prediction of ChPT in reasonable
agreement with the data

N (rTr7):

large Born term, dispersive contribution
less than 10% of cross section,
comparable to experimental errors

& (7°7°):
unsubtracted DR does not work well

no good prediction for neutral pion



yryon

What about higher energies?

B UARK-I (SLAT)
4 ceLo (oesy)

© GELLE (KeKB)

T
(GeV)

(mt77) data from™M

BELLE

12 14 618

RK II, CELLO,

above 800 MeV cross section
dominated by £ [01(211)]
M2 transition:

contribution to DIPOLE
polarizability negligible/zero

variations of dipole polarizability
obscured under £,

dispersion integral for

polarizability weighted with
1/W¢



Polarizability of the pion

The polarizabilities are a fundamental property of a particle,
and the pion is a basic building block of hadronic physics.

A wide-spread range of values has been found by several
analyses of different experiments.

Within the framework of ChPT, the polarizabilities have been
calculated at the 2-loop order. At least for the charged pion,
the convergence of the loop expansion looks very good.

» We do not find a discrepancy between ChPT and DR.

COMPASS claims to come up with a precise determination of
the pion backward polarizability (ctz — ;) from data taken in
2009, with values to be released soon. In particular, these
data may challenge the earlier findings of the Serpukhov
experiment. It is encouraging to learn that future
COMPASS-II work is planned with significantly increased
statistics, in order to (i) determine . and (3, independently,
and (ii) get a first look at the Kaon polarizability.
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