Microelectronics
User Group Meeting
Wrap-up

TWEPP 2011, Vienna, Austria
30/9/2011
Agenda

130 nm

- “News on the 130nm Technology”
 by Wojciech Bialas (CERN) (10’)

- “Design Toos, Flows and Library Aspects during the FE-I4 Implementation on Silicon”
 by Vladimir Zivkovic (NIKHEF Institute) (15’)

65 nm

- “Noise and Radiation Hardness of 65nm CMOS Transistors and Pixel Front-Ends”
 by Massimo Manghisoni (University of Bergamo) (20’)

- Access of 65nm technology through CERN.
 by Kostas Kloukinas (CERN) (10’)

Kostas.Kloukinas@cern.ch
130nm Technology support news

- Release of Mixed Signal Kit V1.8 (11/6/2011)
 - Based on foundry PDK V1.8.0.1
 - Compatible with the “Europractice” 2011 distribution of CAE tools
- Methodology for applying PDK patches.

- Future Plans – *driven by user demand*
 - Expand the existing standard cell library:
 - Regular-Vt core cells at lower supply voltages (1.0 V, 0.8 V)
 - High-Vt core cells, for low power designs.
 - “Compact layout” core cells for area limited designs.
 - Rad-Tolerant cells: ex. DICE
FEI4-A Architecture and Design Foundations

Innovations
- Region architecture (memory on pixel)
- Modular approach and distributed design
- Low current operation, fault tolerance, digital and mixed-signal Test Benches for Simulation

- Radiation hardness out of the box
- Good power distribution
 - Essential when making the long columns
- Substrate isolation (T3)
 - Essential when using standard cell synthesized logic

Multi-site collaboration -> design repository necessary (SOS Cliosoft platform)
Conclusions

• The 65 nm process is starting to be considered by designers for the development of readout ASICs at the next generation colliders
• Static, signal, noise measurements and radiation tests have been performed on devices belonging to a 65 nm CMOS process
• A test chip including DNW MAPS has been submitted in a 65 nm CMOS process provided by IBM
• Measurement results from this prototype circuit are encouraging and provide useful information for future submissions and larger chips
• At the 65 nm nodes, low-noise analog design will pose challenges but, according to the study of key analog parameters and the prototype chip measurement results, appears to be still viable
• The group is planning to develop of a mixed-signal front-end chip in a 65 nm CMOS technology for processing the signal from a fast (diamond or 3D silicon) detector (project funded by the Ministry of Education, University and Research)
CERN is actively evaluating the use of 65nm technologies for HEP applications.

The TSMC 65nm technology is a candidate technology.

Radiation Tolerance Test Results (presented at TWEPP 2011) confirms the compatibility of this technology for SLHC applications.

Negotiations are in progress with IMEC and the foundry to obtain access to IP libraries, including physical layout views, for distribution to collaborating institutes.
The plan is to offer:

- A Mixed Signal Design Kit that integrates the PDK and the IP libraries and is compatible with the workflows of the 130nm Design Kit
- Provide access to memory compiler services.
- Provide access to foundry services via IMEC.
 - MPWs, Engineering runs, Production runs.

Decide on a unique set of technology options.

- Preliminary selection of Technology options:
 - TSMC 65nm LP (Low Power), LO (logic), with 6 metal layers.
 - Core vdd: 1.2V, IO vdd: 2.5V, 3.3V
- NRE cost is strongly modulated by extra technology options.
- Very costly to support multiple design kits.

Designers that consider the use of 65nm technology in their future projects are welcomed to contact us.
Create a MUG mailing list

- To help our communication in organizing future MUG meetings we propose to create a Microelectronics User Group mailing list.

- To subscribe send an e-mail to kostas.kloukinas@cern.ch