Noise and radiation hardness of 65 nm CMOS transistors and pixel front-ends

M. Manghisoni1,2, L. Gaioni2, L. Ratti3,2, V. Re1,2, G. Traversi1,2

1Università degli Studi di Bergamo
2INFN Sezione di Pavia
3Università degli Studi di Pavia

September 27, 2011
Motivation

- SVTs at the next generation colliders ask for highly pixellated detectors, with
 - analog (amplification, filtering, discrimination and possibly even A/D conversion)
 - digital (data sparsification, time stamping and buffering)
functions integrated in the pixel itself

- Designers are currently considering two different approaches:
 - moving to higher density 2D technology nodes
 - moving to 3D technologies with vertical integration techniques

- Standard 2D technologies: the 130 nm and 90 nm CMOS nodes are currently the focus of integrated circuit designers for the project of ASICs in future detector applications

- The 65 nm process is starting to be considered as a new attractive solution in view of the development of high-density, high-performance mixed-signal readout circuits

- Below 100 nm minimum feature size, the choice of the best technology to be used in ASIC design is a tricky problem, since transistor performance changes as CMOS technologies are scaled down into the nanoscale regime

- The impact of new dielectric materials and processing techniques (silicon strain, gate oxide nitridation) on the analog behavior of MOSFETs has to be carefully evaluated
Outline

- Analog performance of MOS transistors in the 65 nm node
 - Intrinsic Gain
 - Gate leakage current
 - Noise performance
 - White noise
 - 1/f noise
 - Radiation hardness

- Experimental results relevant to the Apsel65 prototype chip
 - Front-end channel features
 - Experimental results
 - Standalone channels
 - 3×3 Matrix
 - 8×8 Matrix
 - FFE Standalone channels
Investigated Technologies

<table>
<thead>
<tr>
<th>65 nm Foundry A</th>
<th>90 nm Foundry A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage</td>
<td>1.2 V</td>
</tr>
<tr>
<td>Oxide Thickness</td>
<td>2.4 nm</td>
</tr>
<tr>
<td>Gate Capacitance</td>
<td>15 fF/µm²</td>
</tr>
<tr>
<td>Devices</td>
<td>Low Power</td>
</tr>
<tr>
<td>Layout</td>
<td>Open</td>
</tr>
<tr>
<td>Supply Voltage</td>
<td>1.2 V</td>
</tr>
<tr>
<td>Oxide Thickness</td>
<td>2.6 nm</td>
</tr>
<tr>
<td>Gate Capacitance</td>
<td>13 fF/µm²</td>
</tr>
<tr>
<td>Devices</td>
<td>Low Power</td>
</tr>
<tr>
<td>Layout</td>
<td>Open</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>90 nm Foundry B</th>
<th>130 nm Foundry B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage</td>
<td>1.0 V</td>
</tr>
<tr>
<td>Oxide Thickness</td>
<td>2.0 nm</td>
</tr>
<tr>
<td>Gate Capacitance</td>
<td>18 fF/µm²</td>
</tr>
<tr>
<td>Devices</td>
<td>General Purp.</td>
</tr>
<tr>
<td>Layout</td>
<td>Open</td>
</tr>
<tr>
<td>Supply Voltage</td>
<td>1.2 V</td>
</tr>
<tr>
<td>Oxide Thickness</td>
<td>2.4 nm</td>
</tr>
<tr>
<td>Gate Capacitance</td>
<td>15 fF/µm²</td>
</tr>
<tr>
<td>Devices</td>
<td>General Purp.</td>
</tr>
<tr>
<td>Layout</td>
<td>Open</td>
</tr>
</tbody>
</table>
Intrinsic Gain

- It represents the maximum gain obtainable from a single transistor
 \[\text{Intrinsic Gain} = \frac{g_m}{g_{ds}} \propto \alpha L \]
- \(g_m \) channel transconductance
- \(g_{ds} \) output conductance
- \(\alpha \) scaling factor

- Devices in the plot are biased at the same inversion level expressed by the Inversion Coefficient \(IC_0 = I_D/(I_Z^* W/L) \) where \(I_Z^* \) is the characteristic normalized drain current

- The intrinsic gain
 - is proportional to the channel length
 - is maintained across technology nodes \((L_{min} \text{ scales by the same factor } \alpha) \)
Intrinsic Gain in 65 nm node

As a function of the Inversion Coefficient, the intrinsic gain:
- is independent of the drain current in weak inversion
- decreases with the drain current in strong inversion

As a function of the Channel Length, the intrinsic gain:
- is proportional to the channel length for \(L \) close to \(L_{\text{min}} \) (DIBL dominates on \(g_{ds} \))
- shows a reduced slope for \(L > 5L_{\text{min}} \) (CLM effects dominate on \(g_{ds} \))
Gate Leakage Current

Gate current density:
\[J_G = \frac{I_G}{WL} \]

- The current density may vary between 90 nm processes from two foundries.
- 65 nm MOSFETs are in the same region of current density values as 90 nm Foundry A and 130 nm Foundry B devices.
- This region is well below the commonly used limit of 1 A/cm\(^2\).
- CMOS scaling beyond 100 nm does not necessarily lead to very leaky devices.
Noise in MOS Transistor

Noise in the drain current of a MOSFET can be represented through an equivalent noise voltage source in series with the device gate.

\[S_e^2(f) = S_w^2 + S_{1/f}^2(f) \]

\(S_w \) - white noise
- channel thermal noise (main contribution in the considered operating conditions)
- contributions from parasitic resistances

\[S_w^2 = \frac{4k_B T \Gamma}{g_m} \]
- \(k_B \) Boltzmann’s constant
- \(T \) absolute temperature
- \(\Gamma \) channel thermal noise coefficient

\(S_{1/f} \) - 1/f noise
- technology dependent contribution

\[S_{1/f}^2(f) = \frac{k_f}{C_{OX} W L f^{\alpha_f}} \]
- \(k_f \) 1/f noise parameter
- \(\alpha_f \) 1/f noise slope-related coefficient

White and 1/f noise have been measured on test devices with different geometries and biased at different drain currents.
White noise

Evaluated in terms of the equivalent channel thermal noise resistance:

\[R_{eq} = \frac{S_{W}^2}{4k_B T} = \alpha_w \frac{n \gamma}{g_m} \]

- \(\alpha_w \) excess noise coefficient
- \(n \) proportional to \(I_D(V_{GS}) \) subthreshold characteristic
- \(\gamma \) channel thermal noise coefficient

- \(\alpha_w \approx 1 \) for N and PMOS with \(L > 65 \) nm \(\Rightarrow \) no sizable short channel effects in the considered operating regions (for 65 nm devices \(\alpha_w \approx 1.3 \))
- Negligible contributions from parasitic resistances
Noise in different CMOS nodes

- NMOSFETs belonging to different CMOS nodes, with the minimum L allowed by each process
- Since the oxide thickness t_{ox} and the minimum L scale with the same coefficient, the NMOSFETs feature approximatively the same value of the gate capacitance $C_G = W L C_{ox}$

- $1/f$ noise: devices exhibit a similar $1/f$ noise \Rightarrow the value of the K_f parameter changes little across different CMOS generations
- White noise: devices are biased close to weak inversion \Rightarrow white noise is not sizably affected by L and CMOS node variations even at minimum gate lengths, as it appears in the high frequency portion of the spectra
Ionizing radiation effects in sub-100 nm CMOS

Radiation induced positive charge is removed from thin gate oxides by tunneling (which also prevents the formation of interface states)

- Isolation oxides remain thick (order of 100 nm) also in nanoscale CMOS, and they are radiation soft
- In NMOS edge effects due to radiation-induced positive charge in the STI oxide generate sidewall leakage paths
- In an interdigitated device, this can be modeled considering that two lateral transistors for each finger are turned on
- The effect of these parasitic devices on the noise and static characteristics must be carefully evaluated
Drain Current Static Characteristics

\(I_D(V_{GS}) \) before and after exposure to a 10 Mrad total dose of \(\gamma \)-rays

- A larger amount of lateral leakage takes place in 130 nm devices
- The smaller \(I_{D,\text{lat}} \) of 65 nm devices suggests that the sensitivity to positive charge buildup in STI oxides is mitigated by the higher doping of the P-type body with respect to less scaled processes
Noise in NMOSFETs

- Moderate 1/f noise increase at low current density, due to the contribution of lateral parasitic devices
- At higher currents the degradation is almost negligible because the impact of the parasitic lateral devices on the overall drain current is much smaller
- No increase in the white noise region is detected
- In PMOS, very small increase in the low-frequency part of the noise voltage spectrum, even at low current density
Remarks on 65 nm node

- Static, signal, noise measurements and radiation tests have been performed on devices belonging to a 65 nm CMOS process
 - Intrinsic gain is not degraded by scaling
 - Gate leakage current is well below the limit of 1 A/cm²
 - Channel thermal noise behavior is consistent with equations valid in weak/moderate inversion
 - Flicker noise comparison with previous CMOS nodes shows that scaling to the 65 nm process does not affect 1/f noise performances significantly
 - Radiation hardness tests confirm the high degree of tolerance to ionizing radiation that appears to be typical of sub-100 nm technologies

- At the 65 nm node, low-noise analog design, according to the study of key analog parameters, appears to be still viable

- We designed a prototype chip with mixed-signal readout circuits in a 65 nm CMOS process manufactured by IBM ⇒ APSEL65
Apsel65: a prototype DNW MAPS in 65 nm

Main design features
- Chip Bias V_{DD}: 1.2 V
- PA input W/L: 28/0.25
- PA input I_D: 14 μA
- Power consumption: 20 μW

PL Simulation results
- Charge sensitivity: 725 mV/fC
- Peaking time ($Q_{inj}=800$ e$^-$): 300 ns
- Equivalent Noise Charge: 38 e$^-$
- Threshold Dispersion: 38 e$^-$
Chip description

- **CHi Standalone channels**
 - $C_{inj} = 30 \text{ fF}$
 - Detector simulating cap
 - $C_D = 250 \text{ fF (CH1)}$
 - $C_D = 350 \text{ fF (CH2)}$
 - $C_D = 450 \text{ fF (CH3)}$
 - DNW sensor not connected

- **M1 3x3 matrix**
 - 40 μm pixel pitch
 - all analog outputs accessible
 - $C_{inj} = 30 \text{ fF}$ for the central pixel
 - 360 μm^2 DNW electrode area

- **M2 8x8 matrix**
 - 40 μm pixel pitch
 - row by row, 8 // digital readout
 - 360 μm^2 DNW electrode area

- **FCi FFE channel**
 - $C_{inj} = 10 \text{ fF}$
 - Detector simulating cap
 - $C_D = 50 \text{ fF (FC1)}$
 - $C_D = 100 \text{ fF (FC2)}$
 - $C_D = 150 \text{ fF (FC3)}$
 - $C_D = 100 \text{ fF (FC4)}$
 - **enclosed layout** PA input device
 - DNW sensor not connected
Standalone Channels

- **Peaking time** (at analog buffer output) is close to 530 ns for $Q_{inj}=800$ e$^-$ (simulation: $t_p=300$ ns at shaper out, $t_p=420$ ns at analog buffer out)
- **Recovery time** increases linearly with the signal amplitude
- **Charge sensitivity** has an average value of about 830 mV/fC (725 mV/fC simulated)
- **ENC** is about 10% higher with respect to simulated values
3×3 Matrix

- **Peaking time** is close to 480 ns for $Q_{inj}=800 \ e^{-}$
- **Recovery time** does not increase linearly with the signal amplitude (non-optimal polarization of the circuit)
- **Charge sensitivity** of 625 mV/fC was measured for the central pixel of the matrix
- **Noise**: ENC=67 e$^{-}$ for the central pixel and an average 54 e$^{-}$ for the other cells
Fast Front-End Standalone Channels

Channels conceived for the readout of high resistivity pixels

- Peaking time is close to 42 ns for $Q_{inj}=16000 \text{ e}^-$ (25 ns simulated)
- Charge sensitivity of about 18 mV/fC was measured (42 mV/fC simulated)
- Noise: ENC=165 e$^-$ rms (200 e$^-$ rms simulated)
Conclusions

• The 65 nm process is starting to be considered by designers for the development of readout ASICs at the next generation colliders

• Static, signal, noise measurements and radiation tests have been performed on devices belonging to a 65 nm CMOS process

• A test chip including DNW MAPS has been submitted in a 65 nm CMOS process provided by IBM

• Measurement results from this prototype circuit are encouraging and provide useful information for future submissions and larger chips

• At the 65 nm nodes, low-noise analog design will pose challenges but, according to the study of key analog parameters and the prototype chip measurement results, appears to be still viable

• The group is planning to develop of a mixed-signal front-end chip in a 65 nm CMOS technology for processing the signal from a fast (diamond or 3D silicon) detector (project funded by the Ministry of Education, University and Research)
For Further Reading

L. Ratti, L. Gaioni, M. Manghisoni, V. Re, G. Traversi
TID-induced degradation in static and noise behavior of sub-100 nm multifinger bulk NMOSFETs

L. Gaioni, M. Manghisoni, L. Ratti, V. Re, G. Traversi
Front-end electronics in 65 nm CMOS process for a high density readout of pixel sensors

M. Manghisoni, L. Gaioni, L. Ratti, V. Re, G. Traversi
Introducing 65 nm CMOS technology in low-noise read-out of semiconductor detectors

L. Gaioni, M. Manghisoni, L. Ratti, V. Re, G. Traversi
Evaluation of the radiation tolerance of 65nm CMOS devices for high-density front-end electronics

M. Manghisoni, L. Gaioni, L. Ratti, V. Re, G. Traversi
Design of high-granularity SVT read-out ASICs in the 65 nm CMOS technology node

L. Gaioni, M. Manghisoni, L. Ratti, V. Re, G. Traversi
Performance of front-end circuits for the readout of small-pitch pixel sensors in the 65nm CMOS node