The Front-End Concentrator card for the RD51 Scalable Readout System

1. Instituto de Instrumentación para Imagen Molecular (Centro mixto CSIC-Universitat Politècnica de València-CEMAT), Valencia, Spain
2. CERN PH Division, Geneva, Switzerland

THE SCALABLE READOUT SYSTEM (SRS)

Mandated to establish a "Portable Multichannel Readout system for Multi Pattern Gas Detectors", the Scalable Readout System (SRS) was developed within the RD51 collaboration as a complete readout system for gas detectors like GEMs or MicroMegas, and not excluding other types of detectors.

Goal: to provides a choice of ASICs, hybrids or discrete frontends, with analog or digital readout, which are connected to the SRS readout via a common interface.

Programmable trigger and large event buffer allow different trigger and buffering schemes

Large systems (>16 channels) require the Scalable Readout Unit (SRU) for aggregating up to 40 FECs to 10 Gb/s Ethernet network ports of an Online PC or farm. For small systems, the FECs are directly connected via Gigabit Ethernet cables to the Online Computer running ALICE's DATE software.

ADAPTER CARDS AND MECHANICS

Three different FEC adapter sizes (A, B and C) are defined, with design rules freely available to the SRS developer community.

The ensemble (FEC/adapter, edge mounted) forms a 4x4 220 mm Eurocard that fits on a 19" subchassis

- Can be used as generic 16 ch 12-bit 50 MHz ADC
- Interface to the RD51 APV25 ASIC hybrid
- Interface to the RD51 Beetle ASIC hybrid
- PMT readout in the NEXT experiment
- Interface to digital front ends
- Clock and trigger interface & distribution
- In NEXT, used to interface the SPM readout

Features:

- Xilinx Virtex-5 LX50T FPGA
- On board 256 Mbyte DDR2 event buffer
- 3 multi-gigabit transceivers to A, B, conn.

A- Connector:

72 I/Os configurable as single-ended or differential with selectable signaling levels

B- Connector:

16 I/Os configurable as single-ended or differential with selectable signaling levels

The module is currently being upgraded in order to incorporate a four times larger and faster data buffer (DDR3 6GB), increased processing power (larger Virtex-6 FPGA), enhanced SEU and EMI immunity, compatibility with high B-field environments and an additional SPF+ slot to increase the module throughput and/or to allow Ethernet-based slow controls.

WANT TO DEVELOP A NEW READOUT APPLICATION?

Contact RD51 WG1 Converters (Hans Muller at CERN PH-AID and Jochen Kaminsky at Bonn University)

RD51 aims at providing its users:

- Adapter card design specifications (in case the existing adapters do not suit your application)
- FPGA firmware for basic blocks (FI0-like Interfaces to GbE Ethernet and DDR2, slow controls Interface)
- ALICE's DATE online system is provided by CERN-PH under agreement
- Production and development cost reduction due to a growing base of users and developers
- Access to future applications

You will provide:

- Data path firmware (i.e., your application-dependent data processing)
- I/O firmware (in case you develop a new adapter card)

The FEC card is currently being used or evaluated in several applications like:

- Readout of PMT and SPM sensors in the NEXT Collaboration
- Muon tomography for detection of high-Z materials in cargo (homeland security), Florida Institute of Technology
- NA62, MicroMeGas-based reference tracker station
- UNAM Mexico, THGEM readout station
- Characterization of GEM foils at the Helsinki Institute of Physics
- Readout of resistive strip MM as upgrade to ATLAS detector
- Muon tomography for water quality control in South of France
- GEM Chamber project (Lyon Lab) and GEM readout via SRS (BNL)

Future applications also include BEETLE, VPAT ASICs and future CERN GBT front-end readout

REFERENCES

3. See: http://indico.cern.ch/sessionDisplay.py?sessionId=19&contribId=46&confId=132080

ACKNOWLEDGEMENTS

We acknowledge the support of the NEXT and RD51 Collaborations and the CONSOLIDER-INGENIO2010 grant CSD2008-00037 (Canfranc Underground Physics). We also acknowledge the invaluable support from the DATE team at CERN PH-AID. We thank Michal Kubíček, from Brno University of Technology, for his help with the data recovery algorithms in the FPGA.