A Network Architecture for Bidirectional Data Transfer in High-Energy Physics Experiments Using Electroabsorption Modulators

PAPADOPOULOS, S. ^{1,2}, DARWAZEH, I.², DETRAZ, S. ¹, PAPAKONSTANTINOU, I.², SIGAUD, C. ¹, SOOS, C. ¹, STEJSKAL, P. ¹, STOREY, S. ¹, TROSKA, J. ¹, VASEY, F. ¹ ¹ European Organisation for Nuclear Research – CERN, ² University College London

- Introduction/Motivation
- The network architecture
- The electroabsorption modulator Principle of operation
- Results Static Measurements
- Results Dynamic Measurements
- Conclusion

- LHC upgrade:
 - Higher data rate required
 - Provides framework to explore new technologies and increase infrastructure efficiency
 - Use of low mass, low power consumption, radiation resistant components as frontend devices very important

1033 cm-2s-1

1035 cm-2s-1

1032 cm-2s-1

- A bidirectional link, transferring information to and from the detector over the same fiber would offer a more efficient infrastructure
- Information transferred over current TTC and data readout links could be transferred over single, unified infrastructure
- Unconventional requirements (highly asymmetric, upstream-intensive) compared to commercial networks (e.g. PONs)

Requirements	for	the	upgraded	optical
links				

Upstream Rate/link (Detector)	Data From	10Gbps	
Downstream Data Rate (To Detector)		1Gbps -broadcast	
Link Length		<1km	
Target Sp Ratio	litting	≥1:16	

Topical Workshop on Electronics for Particle Physics 2011

ACEOLE

- Use of Reflective Electroabsorption Modulators (REAMs) to transmit data upstream (from detector to counting room)
- REAMs probably radiation hard – as indicated by the results of RD-23
- REAMs potentially consume less power (intrinsic device power consumption <1mW Vs. 10s of mW for VCSELs)
- Upstream unknown component and system issues
- Investigate feasibility

ACEOLE

Use

Downstream Transmission

Simultaneous transmission of data information and currently transferred over TTC network

ACEOLE

â | | ((

Network Architecture

 Bidirectional architecture, using single fiber for US and DS transmission meeting data rate requirements

Topical Workshop on Electronics for Particle Physics 2011

Electroabsorption Modulator – Principle of Operation

 $\alpha(\text{Eext})$

Static Response and Wavelength

- Important trends with increasing wavelength:
 - Insertion loss decreases
 - Static response minimum moves to higher voltage
- Maximum achievable extinction ratio shows a maximum at ~1545 nm:
 - Hence proper laser can be selected
- Required voltage swing to achieve maximum extinction ratio is ~2V at 1545nm

ACEOLE

Topical Workshop on Electronics for Particle Physics 2011

- Increasing temperature leads to:
 - Increase of insertion loss
 - Decrease of the reverse bias voltage level at which the static response minimum occurs
 - Slight increase of the maximum extinction ratio

- Device is temperaturesensitive
- In commercial applications use of TEC is an appropriate solution
- Not in our application mass and power increase

Extinction Ratio Power Penalty Vs. Temperature

- When optimum modulation voltage levels are used at different temperatures (i.e. there is a voltage adaptation mechanism)
- When fixed modulation voltage levels are used at different temperatures (i.e. no adaptation mechanism)
- There is a significant increase in the extinction ratio power penalty for high temperature variation
- Temperature variations of the order of ~5°C can be easily accommodated

Dynamic Measurements at 1545nm – Eye Diagrams at 10Gbps

Dynamic Measurements at 1545nm – Eye Diagrams at 10Gbps

Topical Workshop on Electronics for Particle Physics 2011

- The required average power to achieve BER=10⁻¹² is P_{rec}=-16.4dBm (launched power: -6.6dBm)
- Using a 10dBm DFB laser would allow us achieving a 1:16 splitting ratio (possibly even 1:32, depending on Rx)

- A new architecture for bidirectional data transfer in the HL-LHC has been presented
- Use of Reflective Electroabsorption Modulators – possible advantages in terms of radiation hardness and power consumption – at the front-end
- Efficient use of resources
- 10Gbps transmission has been experimentally verified
- Radiation hardness tests to be carried out in the near future (order for samples has been already placed)
- Simultaneous operation of REAM as a Tx and Rx to be investigated

We would like to have maximum "distance" between "0" and "1", affected by => received power, extinction ratio

We would also like to minimize noise standard deviation, affected by => thermal noise, relative intensity noise, reflection-induced noise

- Discussed in this presentation:
 - Extinction Ratio
 - Reflections
 - Relative Intensity Noise
- Not discussed in this presentation:
 - Dispersion (not source of major power penalty)
 - Chirping (not source of major power penalty)
 - Modal Noise (irrelevant)
 - Mode partition noise (irrelevant)

Backup slide - Link budget calculations

Upstream Link Budget Calculations		Downstream	Link Budget	
Quantity	Value	Calculations		
Seedina Source	7 dBm	Quantity	Value	
Power		Transmitter Power	0 dBm	
Receiver Sensitivity	-19 dBm	Receiver Sensitivity	-25 dBm	
Overall Fiber Loss	0.4 dB			
Connector Loss	2 dB	Overall Fiber Loss	0.2 dBm	
Splitting Loss	1+10log(N)	Connector Loss	2 dB	
Filter Loss	1.5 dB	Splitting Loss	1+10log(N)	
Circulator Losses	1.5 dB	Filter Loss	0.75 dB	
REAM Insertion Loss	$\begin{array}{ccc} 3.5 & dB < \alpha_{REAM,ins} < 5 \\ dB & \end{array}$	Circulator Losses	0.75 dB	
Power Penalties – Upstream	$\alpha_{Pen,US}$	Power Penalties – Downstream	α _{Pen,DS}	
Power Margin	19.6 - 10log(N) -	Power Margin	20.3 - 10log(N) -	
29/09/2011 $\alpha_{\text{REAM,ins}} - \alpha_{\text{Pen,US}}$		ectronics for Particle Physics 2011	$\alpha_{Pen,US}$	

Backup Slide: Extinction ratio power penalty and choice of optimum wavelength

- There is a relatively wide wavelength region where the overall power penalty caused by the imperfect extinction ratio and the insertion loss is stable
- 1545 nm has been judged to be a good compromise between low required voltage swing and optimum overall power penalty

Wavelength (nm)

- Polarization sensitivity at 1545 nm has been measured
- Maximum extinction ratio difference 1 dB (ignored in the rest of the document)

- Maximum absorption variation <1dB
- Input optical power dynamic range (>10dB) much higher than the required

Backup slide - Noise Measurements

- Optical head thermal noise (BW=30GHz): 10.50uW
- Electrical head thermal noise (BW=20GHz): 260uV
- Electrical head + 10G PIN Diode: 780.5uV
- PIN diode induced thermal noise: 735.8uV
- Equivalent optical thermal noise:2.9uW
- Overall "Conversion efficiency" (measured by comparing optical and electrical noise): ~265V/W
- Implied receiver sensitivity (Q=7): -14dBm
- Tunable laser relative intensity noise: ~ -146dB/Hz
- Insertion of REAM between tunable laser and scope did not lead to noise increase (no shot noise added+no reflection-induced performance degradation)

For Q=9, RIN=145dB/Hz, RIN power penaly ~0.1dB (negligible)

23

ACEOLE

- Can affect system performance through the following mechanisms:
 - Beating of signal and reflections at the receiver
 - Cavity formation
 - Disturbance of laser diode operation

Backup slide - Impact of reflections Bragg grating reflectivity vs wavelength

25

ACEOLE

26

ACEOLE

- Laser diode depicted: 3cm(length)x1.5cm(wid th)
- Circulator depicted: 5.5mm(diameter)x80m m(length)

