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Introduction/Motivation

= LHC upgrade:
= Higher data rate required

= Provides framework to explore
new technologies and increase
infrastructure efficiency

= Use of low mass, low power
consumption, radiation
resistant components as front-
end devices very important
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Link Requirements

= A Dbidirectional link, transferring
information to and from the detector over
the same fiber would offer a more
efficient infrastructure

= Information transferred over current TTC
and data readout links could be Tx

transferred over single, unified I Rx
infrastructure |

= Unconventional requirements (highly /
asymmetric, upstream-intensive) 3 Tx
compared to commercial networks (e.g. Rx ] R
PONs) -

Inic
Tx

Requirements for the upgraded optical
links

Upstream Data | 10Gbps 3 \;\ '
Rate/link  (From | B

Detector) ~

Downstream Data | 1Gbps -broadcast Counting | Detector

Room Environment

Rate (To Detector) |
Link Length <lkm

Target Splitting | 21:16
Ratio
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Upstream Transmission

= Use of Reflective
Electroabsorption Modulators
(REAMs) to transmit data

upstream (from detector to S {Lipssst;?nn;
counting room) B @ —

= REAMSs probably radiation hard {51951% |

nm

— as indicated by the results of
RD-23

= REAMs potentially consume
less power (intrinsic device
power consumption <1mWw Vs.
10s of mW for VCSELS)

= Upstream unknown component Counting
and system issues Room

= Investigate feasibility
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Environment

Eeed
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= Use of different
wavelengths for
upstream and
downstream to achieve
bidirectionality over
single fiber

Simultaneous
transmission of data
and Information

currently  transferred
over TTC network

Downstream Transmission
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Network Architecture

If REAM
Rx

= Downstream simple and o Ccieuatry
similar to current TTC
broadcast system

= Bidirectional architecture, Circulator
using single fiber for US [I—®

Upstream
(1550nm)

i
i
r N
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meeting data rate | Downdveam
requirements | (tasonm)
Circulator i
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3 / B Splitter 1 i B
8" ___________,_————-ﬂ______ R =
T . Counting: Detector
Room I Environment
i | |
\ Tx
Rx Feed T
o | Brmen [T

29/09/2011 Topical Workshop on Electronics for Particle Physics 2011



@ Electroabsorption Modulator — Principle of
i

Operation

= Electroabsorption Modulators absorb

&
ACEOLE

light according to the electric field
across the device

= Static Response: the ratio of the output
light intensity over the input |nght
intensity expressed as a function of the
externally applied bias voltage

= The static response can be used to
determine the maximum achievable
extinction ratio — Extinction Ratio:

P(“0")/P(“1") — which can have a
significant effect on system performance

= The static response depends on input

Static Response (T(V)) (dB)

light wavelength and device o i i
temperature ' Reverse Bias (V). .

¢ Eext
CW Light

< a(Eext)

AN
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Static Response and Wavelength ,, 2="

= Important  trends  With | “limiar i s omoos
Increasing wavelength: - oo
= Insertion loss decreases - "
= Static response minimum | :* = o
moves to higher voltage .
= Maximum achievable = *
extinction ratio shows a E
maximum at ~1545 nm: i T
= Hence proper laser can be 7 VIR B
selected go g
= Required voltage swing °
to achieve maximum
extinction ratio is ~2V at .
1545nm 1

300 1520 1540 1560 1580 1600 1620 1640
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Static Response and Temperature,,, 23

* Increasing temperature leads to:

— Increase of insertion loss

— Decrease of the reverse bias voltage level at which
the static response minimum occurs

— Slight increase of the maximum extinction ratio

Static Response (T(V)) (dB)

29/09/2011

-3t Measurement at 1550 nm :;gg

_al 50C ||

51 1  Device is temperature-

o I sensitive

- | * In commercial applications use
- a of TEC is an appropriate

_g_ = .
10} / | solution
- |  Not in our application — mass

and power increase

| | | |
-1 0 1 2 3 4
Reverse Bias (V)
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@) Extinction Ratio Power Penalty Vs.

A\ Temperature

-2 T T T T -2 T T T T
T(VL) —10C
.l 3 so0l
-4rT(VL) 1 —4r
% ,5:“ %" _5_
=~ gl = gk
é l g 7l T(VHFixed)
& a
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< T < T(Vi.0pt)
= _ L -— _10_
87" 8
=11 11}
g1 , ] 12}
Vi Iy, Vi ) ) VH,Fixed V/H,0pt
13 6 5 5 4 3 6 i ; 3 4
Reverse Bias (V) Reverse Bias (V)
= The extinction ratio power penalty was 5
calculated for two cases: —5- Optimum Voltage Lovel]
45 =6- Fixed Voltage Levels

= When optimum modulation voltage levels are
used at different temperatures (i.e. there is a
voltage adaptation mechanism)

= When fixed modulation voltage levels are
used at different temperatures (i.e. no
adaptation mechanism)
= There is a significant increase Iin the
extinction ratio power penalty for high
temperature variation

= Temperature variations of the order of ~5°C I A
can be easily accommodated

Extinction Ratio Power Penalty (dB)
N w
wn w tn IS

)

=
cU‘!
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©) Dynamic Measurements at 1545nm — Eye

7\ Diagrams at 10Ghps

Q=(Iy —lg )/(0,+0y)
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Optical eye
diagram, Q=7
(received
power=-9.3dBm,
equivalent
BER=10")

Optical eye
diagram, Q=9
(received
power=-7.9dBm,
equivalent
BER=10)
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7\ Diagrams at 10Ghps
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)

Y Dynamic Measurements at 1545nm — Eye >
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Electrical eye

diagram, Q=7

(received
power=-16.4dBm,

equivalent

BER=10")

Electrical eye
diagram, Q=9
(received
power=-13.5dBm,
equivalent
BER=10"")
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Dynamic Measurements at 1545 nm — y
i

ACEOLE

Estimated BER Vs Average Power

= The required average power to achieve BER=10"is Poc=-
16.4dBm (launched power: -6.6dBm)

= Using a 10dBm DFB laser would allow us achieving a 1:16
splitting ratio (possibly even 1:32, depending on RXx)
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Conclusion

s A new architecture for

radiation hardness and power
consumption — at the front-end
Downstream

s Efficient use of resources : (1490nm)

= 10Gbps transmission has been
experimentally verified . P

= Radiation hardness tests to be ‘\1
carried out in the near future Splitter
(order for samples has been Countin
already placed) Room

= Simultaneous  operation  of
REAM as a Tx and Rx to be [Sesd
Investigated = ?

3 REAM
Seed
Rx

(1550nm)

bidirectional data transfer in the — Circuatory . —
HL-LHC has been presented ; T

= Use of Reflective i e
Electroabsorption Modulators — Circulator L (tesonm
possible advantages in terms of [&« & E

Circulator

T REAM
Rx

Detector
Environment
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©) Backup slide - Main theme of -
A

ACEOLE

\l presentation

p(1)=0.5

&

O = Onose

p(0)=0.5
u=0
0= Oyose

p(1)*p(rcv O | xmit 1)  p(0)*p(rev 1 | xmit O)

We would like to have maximum
“distance” between “0” and “17,
affected by => received power,
extinction ratio

We would also like to minimize noise
standard deviation, affected by =>
thermal noise, relative intensity noise,
reflection-induced noise
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©) Backup slide - Sources of power »
i

ACEOLE

nenalt

= Discussed in this presentation:
= Extinction Ratio
= Reflections
= Relative Intensity Noise

= Not discussed in this presentation:
= Dispersion (not source of major power penalty)
= Chirping (not source of major power penalty)
= Modal Noise (irrelevant)
= Mode partition noise (irrelevant)

17
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Backup slide - Link budget calculations, . - ="

Quantity Value

Seeding Source 7 dBm QUELLY Ve
Power Transmitter Power 0 dBm
Receiver Sensitivity -19 dBm Receiver 25 dBm
Overall Fiber Loss 0.4 dB Sensitivity

Connector Loss 2 dB Overall Fiber Loss 0.2 dBm
Splitting Loss 1+10log(N) Connector Loss 2 dB

Filter Loss 1.5dB Splitting Loss 1+10log(N)
Circulator Losses 1.5dB Filter Loss 0.75 dB

REAM Insertion 3.5  dB<dgrgawins<® Circulator Losses 0.75dB
Loss dB

Power Penalties — dp, s Power Penalties — 0pg,, ps

Upstream Downstream

Power Margin 19.6 — 10log(N) — Power Margin 20.3 — 10log(N) -
a . —_
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Backup Slide: Extinction ratio power penalty
7

'
ACEOLE

and choice of optimum wavelength &

= There is a relatively wide
wavelength region where
the overall power penalty
caused by the imperfect
extinction ratio and the
Insertion loss is stable

= 1545 nm has Dbeen
judged to be a good .
compromise between Exincion Rato (05
low required voltage i /
swing and optimum £ T /
overall power penalty 0N /

4] [=1] =] [=2]
T T T T
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Backup slide - Static response and
D)

nolarization

* Polarization sensitivity at 1545 nm has
been measured

* Maximum extinction ratio difference 1 dB
(ignored In the rest of the document)

Reverse Bias Voltage (V)
o—1——vr—————7——T1T—T—T—T—1

0 0.20.40608 1 1.21.4161.8 2 2.22.42628 3 3.2343.63.8

o

B

Maximum Absorption
= Ninimum Absorption

—

\/
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Backup slide - Saturation/Optical input power |5
i

ACEOLE

and maximum absorption &

* Maximum absorption variation <1dB

* |nput optical power dynamic range (>10dB)
much higher than the required

136

13.4

13.2

13

12.8

12.6

Maximum Absorption {dB)

12.4

12.2

12

-4.94 -394 -2.94 -1.94 -0.94 0.06 1.06 2.06 3.06 4.06 5.06 6.06

Input Optical Power (dBm)
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Backup slide - Noise Measurements ACEOIE

.

Optical head thermal noise (BW=30GHz): 10.50uW
Electrical head thermal noise (BW=20GHz): 260uV
Electrical head + 10G PIN Diode: 780.5uV

PIN diode induced thermal noise: 735.8uV
Equivalent optical thermal noise:2.9uW

Overall “Conversion efficiency” (measured by comparing
optical and electrical noise): ~265V/W

Implied receiver sensitivity (Q=7): -14dBm
Tunable laser relative intensity noise: ~ -146dB/Hz

Insertion of REAM between tunable laser and scope did
not lead to noise Increase (no shot noise added+no
reflection-induced performance degradation)

22
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Backup slide - Impact of Relative Intensity ‘
7

Noise

= For Q=9, RIN=145dB/Hz, RIN power penaly
~0.1dB (negligible)

23
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Backup slide - Impact of reflectiong, . =

= Can affect system performance through the
following mechanisms:
= Beating of signal and reflections at the receiver
= Cavity formation
= Disturbance of laser diode operation

24
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Backup slide - Impact of reflections Bragg
7
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7\ grating reflectivity vs wavelength

Reflectivity Vs Wavelength

—a—
S ——
: —

-40

Fraction of power reflected (dB)

Wavelength (nm)
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Backup slide - Impact of Reflections
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Q-Value Difference

Q-Penalty Vs Reflectivity

o F N W A~ O O N 0o ©
/
/

PHOLL PO L LD PP PP PP D P
7 97,07 7 67 B° (S 7 0 (6 WV (A (07107 (0 087 T o o)

Reflectivity (dB)
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Backup slide - Possible implementation —
| Front- and back-end

= Laser diode depicted:
3cm(length)x1.5cm(wid
th)

= Circulator depicted:
5.5mm(diameter)x80m
m(length)
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Extinction Ratio (dB)
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