

Programmable Logic in the 21st Century Where are we and Where are we going?

Steve Trimberger, Xilinx Fellow

Key Messages

Still Pushing IC Manufacturing Technology

- Programmable logic has been successful because of effective use of Moore's Law
- Integrated circuit manufacturing doesn't give us all we need
- More than Moore: 3D, circuits for power, rad-hard, integration

Xilinx 7-Series is Pretty Impressive

- Capacity, power, I/O bandwidth, processor integration, ADC
- Xilinx targets its major markets: communications, computing, image processing, automotive, industrial control

Power: its Importance Continues to Grow

- FPGAs still give the best ops/watt

Design Effort

- Improved devices, architecture and software

Introducing Xilinx

Worldwide leader in programmable solutions

- Founded in 1984
- \$2.31B in revenues in 2010
- ~3,000 employees worldwide
- 20,000 customers worldwide
- Pioneer of the fabless semiconductor model
- Inventor of the FPGA
- 50% PLD market segment share*
- Worldwide presence, with headquarters in San Jose, CA; Dublin, Ireland and Singapore

1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 * According to market analyst firm iSuppli Corp . Source: <u>http://www.xilinx.com/company/about.htm</u>

FPGA Capacity Trends

FPGA Performance Trends

FPGA Energy Trends (W / LC MHz)

Pause

Solving Next Generation Design Challenges For All Market Segments

Next Gen W Communicat		ations
Computing ARTIX ⁷	KINTEX.	Consumer VIRTEX.7
Lowest Power and Cost	Industry's Best Price-Performance	Industry's Highest System Performance and Capacity
 Portable/handheld ultrasound 3D cameras & camcorders D-SLR still cameras Software defined radio 3DTV Portable eReaders Automotive Infotainment Multifunction printers 	 Wireless LTE infrastructure 10G PON OLT line card LED backlit & 3D video displays Video-over-IP bridge Cellular radio Medical & Avionics imaging Set top boxes Motor control 	 400G & 100G line cards 300G Interlaken bridge Terabit switch fabric 100G OTN MUXPONDER RADAR ASIC emulation Test & Measurement
Aerospace & Defense Measurement		dical ging Audio Video Broadcast

Major Universal Market Challenges

Market Challenges

- Lower <u>Power</u>
 - Meeting Legislation and Regulations

Higher <u>Performance</u>

 System Capacity and Capability

Improved <u>Productivity</u>

 Reduce Capital and Operating Expenses (OPEX, CAPEX)

Market Segments Affected

Flat Panel/TV, Central Office, Server Farms, Portable Medica Portable and Wired Consumer

Wired Infrastructure, 400G Networks, Wireless, Broadcast, Defense

Wireless, Wired, High Performance Computing

#1 problem from over 300 top customers' surveyed: Higher System Performance Impacted by Power Budget Limitations

Xilinx 7 Series Highlights

• 7 Series silicon devices

- 28 nm Technology, TSMC HPL process
- 50% reduction in power over 40 nm devices

3 FPGA Fabrics

- Artix = Low cost, low power FPGA ("1W FPGA")
- Kintex = Density & performance FPGA ("Market Sweet spot")
- Virtex = Highest density and performance FPGA

("More than Moore")

'More than Moore' density increase

- Up to 2M logic cells
- Using Stacked Silicon Interconnect Technology (SSIT)
- Improved GT bandwidth
 - GT bandwidth increased to 28 GHz
- Zynq Embedded Processing Platform (EPP)

Design Green by Xilinx

Ground Breaking Capacity Gains at 28nm

World's First 2 Million Logic Cell FPGA

 Over 2x capacity increases over Spartan-6 and Virtex-6 FPGAs

Family	Capacity Range
ARTIX.7	8K – 350K LCs
KINTEX. ⁷⁷	70K – 480K LCs
VIRTEX.7	330K – 2M LCs

- 8K 2M LCs; the widest capacity range offered in a single unified product family
- Larger densities enable higher performance
 - More calculations/clock cycle by utilizing parallelism inherent in FPGAs

Unified Architecture Boosts Design Productivity

Accelerating Design Creation, Debug and Simplifying Reuse

High-k Metal Gate Transistor Rescues Moore's Law

HKMG:

- introduced by Intel at 45nm
- available at 28nm from top foundries
- > 25x lower gate oxide leakage
- > 30% lower switching power
- > 30% higher drive current or
- > 5x lower source-drain leakage

Source: "Challenges and Innovations in Nano-CMOS Transistor Scaling", Tahir Ghani, Intel, Oct 2009

7 Series Power Efficiency Focus from Every Angle

Xilinx History of Systems Integration

Agile Mixed Signal (AMS) Technology Customized Analog with FPGA Flexibility

 Significant cost & area savings by integrating common analog functionality

- \$3+ discrete analog functions integrated
- General purpose 12-bit Analog Front End covers wide range of General Purpose Analog Applications

Customized Analog beyond off-the-shelf Products

- Implement simple analog monitoring or
- Complex analog signal conditioning and processing

Enhanced Reliability, Safety, Security

- Single chip
- On-Chip temp & Voltage sensor
- Available in <u>all</u> 7 series devices

Agile Mixed Signal Technology Applications

XADC specifications cover a wide range of Data Converter applications

- Wide range of sampling and timing modes
- Accommodates various analog signal types

Introducing Stacked Silicon Interconnect Technology High Bandwidth, Low Latency, Low Power

Large Monolithic FPGA

Die 1

Xilinx Innovation

Multiple chips on PCB or MCB

- Tens of thousands of low latency, die-to-die connections
- Large devices available earlier in time
- No wasted I/O power
- Over five years of R&D

Delivers the Best of Both Worlds: High and Usable Capacity

Xilinx FPGA Architectural Innovations At the Heart of the Technology

FPGA Slices Side-by-Side Silicon Interposer

Harnesses Proven Technology in a Unique Way

Transceiver Speed Expands Rapidly

High-Speed Transceiver Evolution

Challenge:

- Increase device BW
- No increase in total device power
- XCVR gains from scaling: negligible

Solution:

- Careful circuit design throughout XCVR
- Increased Gbps / XCVR
- More XCVR / Device

Max Rate (Gbps)

Max GTs per Device

Relative Power (Per GT)

- Low power mode for short channels
- Lanes share a PLL vs PLL per lane

Result:

- 60% Increased max device BW
- Device XCVR power unchanged

GTP

3.75

0.35x

4

GTX

10.3125

56

0.7x

Page 22

University of Edinburgh Smith-Waterman DNA Matching

Platfo	rm	ormance *) per \$ spent	Normali	sed Perform spent	ance per \$
FPG	A	0.34		4.6	
GPU	I	0.14		1.9	
Cell E	E	0.17		2.3	1
GPF Cell Updates	Per Second	0.07 Perform	·		book
			ance	Nor	nalised nce per Wa
	Per Second	Perform Performa	ance	Nor Performa	
	Per Second Platform	Perform Performa (MCUPS) pe	ance	Nor Performa	nce per Wa
	Per Second Platform FPGA	Perform Performa (MCUPS) po 508	ance	Nor Performa	nce per Wa 584

Emphasis added

University of Edinburgh Monte-Carlo Financial Options Pricing

			Performance pe	er\$		
P	Platform	Pe	erformance (Paths/sec) per \$ spent	Perfo	Nor mal ised	spent
	FPGA		3399		32:1	
	GPU		3339		32:1	
	GPP		105		1:1	
	[Performance	-		rmanca
			Paths per Second Per	-	malised Perfe	
	Platfo		Paths per Second Per Watt	-	malised Perfe per Watt	
	FPG	A	Paths per Second Per Watt 3,330,928	-	malised Perfe per Watt 1090:1	
		A	Paths per Second Per Watt 3,330,928 64,322	-	malised Perfe per Watt	
	FPG	A J	Paths per Second Per Watt 3,330,928	-	malised Perfe per Watt 1090:1	
	FPG/ GPU	A J	Paths per Second Per Watt 3,330,928 64,322	-	malised Perfe per Watt 1090:1 21:1	
	FPG/ GPU GPP	A J	Paths per Second Per Watt 3,330,928 64,322 3,055	Nor	malised Perio per Watt 1090:1 21:1 1:1	
	FPG/ GPU GPP	A J	Paths per Second Per Watt 3,330,928 64,322	Nor	malised Perio per Watt 1090:1 21:1 1:1	

Design Costs Grow Exponentially, Too

http://www.design-reuse.com

Hardware and Software Programmability

Estimated FPGA /PLD Design Starts, 2003-2013

Zynq-7020 Device Dual-Core ARM with FPGA Peripheral

Processor System (PS)

- ARM Cortex-A9 MPcore
- Standard Peripherals
- 32-bit DDR3 / LPDDR2 controller
- 54 Multi-Use IOs
- 73 DDR IOs

Programmable Logic (PL)

- 85 K Logic Cells
- 106K FFs
- 140 32-Kb Block RAM
- 220 DSP Blocks
- Dual 12-bit ADC
- Secure configuration engine
- 4 Clock Management Tiles
- 200 Select IO (1.2-3.3V)

Zynq-7000 Processor System (PS)

Dual Core Cortex ARM A9

- NEON, 512 KB L2 cache
- 256 KB On-Chip-Memory (OCM)
- DDR Interface
 - DDR3 Performance
 - High BW utilization
- Config & Legacy Memory I/F
 - Quad-SPI, NOR, NAND
- Standard Peripherals GigE …
 - Available to PS IO or to Programmable Logic
- System Level Peripherals
 - Clock generation, Counter Timers
 - 8 Channel DMA controller
 - Coresight Debugging

Zynq-7000 Programmable Logic (PL)

Programmable Logic Resources

- 30K 235 K Logic Cells
- Dedicated 36 K-bit BRAMs, DSP, CMT
- XADC dual channel 12-bit ADC
- Up to 12 GTs with PCIe hard core
- Up to 300 Select IOs

Programmable Logic AXI Interfaces

- Multiple 32/64 bit AXI interfaces to PL
- Accelerator Coherency Port (ACP) with access to caches

Programmable Logic System Interfaces

- Interrupts, DMA control
- Debug

High Performance PL Configuration

- Security Decryption Engine
- Under 200 ms configuration time from flash
- Debugging interfaces

Embedded Design Flow Using Zynq-7000

Page 30

Axilin© AutoPilot C to Gates

 In 2010, BDTI optical flow benchmark showed quality of output comparable to manual design.

"In our test of Man vs. Machine; Machine won hands down! We were able to create and verify complex matrix inverse in 5 days vs. 3 months; Algorithm to FPGA speed & QoR is unbelievable. If I did not verify in hardware I would think the tool is lying. "*—MilAero Company*

FPGA Leadership at 28nm

Lowest Total <u>Power</u> FPGAs

- HPL process proven 50% lower over alternative

Highest Productivity FPGAs

- Unified, plug and play with extensive Ecosystem
- Agile Mixed Signal (AMS) providing analog capability in all 7 series family members
- Fastest cost reduction path with EasyPath[™]-7 (all Virtex-7 FPGAs)

Highest <u>Performance</u> FPGAs

- Largest capacity: 2M logic cells (XC7V2000T)
- Largest transceiver count: 96 (XC7VX1140T)
- 100x better connectivity/watt: Stacked Silicon Interconnect Technology
- Fastest memory interface: 1,866 Mb/s (Kintex-7 and Virtex-7 FPGAs)
- Largest Block RAM capacity: 68 Mb (XC7VX1140T)
- Highest DSP performance: 5,112 GMACS symmetric mode (XC7VX980T)

Innovative Architecture Breaks the Rules

Extensible Processing Platform (Zynq-7000 EPP family)

Looking Ahead: Technology

Moore's Law still operates Wafer fabrication delivers more transistors Wafer fabrication does not deliver significantly higher clock rate, lower power **Sombandwidth** Stacked silicon packaging addresses 1.00E+03 internal bandwidth and allows further TSV Interposer system integration 1985 1990 1995 2000 2005 2010 Year

Looking Ahead: Power

- There is a fundamental tradeoff between performance and power
- The power issue will not go away
- The invisible and easy power optimizations have been done
- Next-generation power management will require thoughtful system design
- Watch for "dark silicon"

Before

BRAM

After

Looking Ahead: Design

The need for efficient design will continue to increase

- More explicit effort on design reuse
- We are raising the design abstraction. Can it get higher than C?
- Specialty languages


```
void core (
```

// input size int n. float *data in1, // input stream float *data in2, // input stream float *data out // output stream) {

int i, j=0;

```
for (i=0; i<n; i++)
 data_out[i] = data_in1[i] + data_in2[i];
```

Key Messages

Still Pushing IC Manufacturing Technology

- Programmable logic has been successful because of effective use of Moore's Law
- Integrated circuit manufacturing doesn't give us all we need
- More than Moore: 3D, circuits for power, rad-hard, integration

Xilinx 7-Series is Pretty Impressive

- Capacity, power, I/O bandwidth, processor integration, ADC
- Xilinx targets its major markets: communications, computing, image processing, automotive, industrial control

Power: its Importance Continues to Grow

- FPGAs still give the best ops/watt

Design Effort

- Improved devices, architecture and software

Thank You