UPGRADE OF THE CMS TRACKER WITH TRACKING TRIGGER

R&D and ideas for implementation
Outline

- Introduction: the Tracker Upgrades
- Requirements for HL-LHC
- Implementation of trigger functionality
 - Modules with p_T discrimination
 - Study of possible Tracker geometries
 - Possible track trigger system concepts
- Conclusions and outlook
The Tracker Upgrades

- **Pixel upgrade**
 - Foreseen for the middle of this decade
 - 4-layers / 3 disks
 - Optimized design, substantially reduced mass
 - CO$_2$ cooling, DC-DC converters for powering
 - Electronics more robust @ high rate

- **Full Tracker upgrade**
 - Foreseen for the beginning of the next decade
 - Large project, vast R&D program covering all detector aspects
 - Includes requirement of tracking in Level-1 trigger
 - Will also involve one further upgrade of the pixel detector
 - Focus has been mostly on the outer tracker, for the time being
The full Tracker Upgrade: basic requirements

- **Granularity**
 - Resolve up to 200÷250 collisions per bunch crossing
 - Nominal figure of 5×10^{34} cm$^{-2}$ s$^{-1}$ @ 40 MHz corresponds to ≥ 100 collisions
 - Maintain occupancy at the few % level

- **Radiation hardness**
 - Ultimate integrated luminosity considered ~ 3000 fb$^{-1}$
 - To be compared with original ~ 500 fb$^{-1}$
An “old” requirement

- Improve Tracking performance
- Current Tracker has a lot of material
 - Modules, power cables, cooling, support structures
 - Particularly between barrel and end-caps
A “new” requirement

- µ, e and jet rates would exceed 100 kHz at high luminosity
- Increasing thresholds would affect physics performance
 - Performance of algorithms degrades with pile-up
 - Muons: increased background rates from accidental coincidences
 - Electrons/photons: reduced QCD rejection at fixed efficiency from isolation
- Planned “phase-1” trigger upgrades are not sufficient
 - 4th CSC muon station in the forward
 - More granularity/segmentation from calorimeters and muons

Tracker input to Level-1 trigger

Goals:
- Maintain overall L1 rate within 100 KHz
- Keep latency within ~ 6 µs (ECAL pipeline 256 samples = 6.4 µs)
 - The current limit is the Tracker
Example: single muon trigger

- Phase-1 trigger upgrade should provide $\geq \times 2$ improvement in rejection power
- However, rate remains \sim flat at high p_T
 - Mis-measured tracks would \sim saturate the available rate eventually
 -Muon system alone cannot cope with 5×10^{34} and above
- Matching Tracker coordinates can potentially improve the resolution by one order of magnitude

- Similar issue for single electron trigger
 - Isolation cuts using tracks may need some discrimination on primary vertex z position, to avoid rejecting good electrons
Trigger architectures

- **(a) “push” path**
 - L1 tracking trigger data combined with calorimeter & muon trigger data
 - With finer granularity than presently employed
 - Physics objects made from tracking, calorimeter & muon trigger data transmitted to Global Trigger

- **(b) “pull” path**
 - Use present L1 calorimeter & muon triggers to produce a “Level-0” to request tracking information from specific regions
 - Same latency as today’s Level-1 (~3 µs)
 - Expected rate ~ 1 MHz
 - Tracker sends out information from regions of interest (within a few clock cycles), to form a new combined L1 trigger
 - Within the remaining ~3 µs

- Mostly focusing on option (a) so far
 - Maintains present architecture
 - Requires local data reduction (i.e. rejection of low-p_T tracks)
 - Possible implementation exploits the strong CMS magnetic field
Modules with p_T discrimination

- Select locally hits from particle above a p_T threshold ("p_T module")
 - Threshold 1 to a few GeV → data reduction of one order of magnitude or more

- Correlate signals in two closely-spaced sensors
 - Exploits the strong magnetic field of CMS

- Several options considered:
 - With strip sensors only
 - With pixellated sensors
 - With vertical interconnection through an interposer
 - With interconnection at the sensors edge
p_T modules in barrel and end-cap

- Sensitivity to p_T from measurement of $\Delta(R\phi)$ over a given ΔR
- For a given p_T, $\Delta(R\phi)$ increases with R
 - A same geometrical cut, corresponds to harder p_T cuts at large radii
 - At low radii, rejection power limited by pitch

- In the barrel, ΔR is given directly by the sensors spacing
- In the end-cap, it depends on the location of the detector
 - End-cap configuration typically requires wider spacing
Simplest option: “2S Module”

- 2x Strip sensors
- Light and “simple”
- No z information
- Suitable for outer part
2S Modules: possible features

- ≈ 5 cm long strips, ≈ 90 µm pitch
- Wirebonds from the sensors to the hybrid on the two sides
 - 2048 channels on each hybrid
- Chips bump-bonded onto the hybrid
- Neat and lightweight design
- Should use 1 link / module
 - Ideally to be integrated in the module itself, to avoid cumbersome connectivity
 ★ Option under study
“PS” module

- Pixel + strip sensor with horizontal connectivity

≤ 50 mm

≤ 100 mm
PS modules: some features

- **Sensors:**
 - Top sensor: strips
 - 2×25 mm, 100 µm pitch
 - Bottom sensor: long pixels
 - 100 µm × 1500 µm

- **Readout:**
 - Top: wirebonds to “hybrid”
 - Bottom: pixel chips wirebonded to hybrid
 - Correlation in the pixel chips?

- **No interposer, sensors spacing tunable**

- **Power estimates**
 - Pixels ~2.62 W
 - Strips ~0.51 W
 - Logic ~ 0.24 W
 - Low-power GBT ~ 0.5 W
 - Power converter ~0.4 W
 - Total ~ 4.5 W
 - Pixel chip is the driver
Vertical interconnections: “VPS module”

- Meant to improve upon limitations of “horizontal” PS modules
- Possible advantages
 - Module size independent of granularity
 - In principle $10 \times 10 \mathrm{cm}^2$ module feasible
 - Can help for integration in hermetic surfaces, services etc…
 - Strip length tunable, not constrained to $\frac{1}{2}$ module length
 - Mitigate geometrical inefficiency for stub finding at the edges and in the center
- Several difficult issues involved
 - Interconnection technologies
 - Size of the assembly may be eventually limited anyway, by difficulty/yield
 - Need interposer covering the whole surface of the module
 - May significantly affect the module mass
 - Sensor spacing determined by thickness of interposer (not tunable)
 - Not well adapted to end-cap configuration
- Possible advantages in terms of system aspects are to be proven, and depend on module details
One development based on 3d electronics

- A single chip connected to top and bottom sensors
- Analogue paths through interposer from top sensor, segmented in ~ cm long strips
- Bottom sensor provides z precision (~ mm long pixels)
- Electronics and connectivity (interposer) are technological challenges (yield, robustness, mass, large–size module)
Development in steps

- Demonstrator $5 \times 5 \rightarrow$ module 100×100?

- A long way to go for large surface, and volume production
- Lightweight interposer is a key for the module quality
Evaluation of different options: layout modelling

- Dedicated standalone software package©
 © N. De Maio, S. Mersi
 Based also on work from V. Karimaki and G. Hall

- Allows to place in space active and passive volumes
 ⊢ Starting from a small sets of simple parameters
Simple (semi-automatic) modelling of services

Material on active elements + Material for services automatically routed
- Implements estimates of tracking performance

- Use measurement errors to estimate the errors in track fit parameters

- **Multiple scattering** treated as (correlated) a measurement error

\[y_n = \sum_{i=1}^{n-1} (x_n - x_i) \theta_i \]

Deviation due to scattering:

\[\sigma_{n,m} = \langle y_n y_m \rangle = \sum_{i=1}^{n-1} (x_m - x_i) (x_n - x_i) \langle \theta_i^2 \rangle \]

\[\sigma_n^2 = \frac{p^2}{12} \]

- As well as fraction of interacting particles

- Can be used in the same way to evaluate trigger performance potential
- Validated by modelling the present tracker

- Spectacular accuracy out of the box!
➢ Summarize results in three rapidity regions

Δη = 0.8
Roughly same number of tracks expected
Layout studies: some results

- Compare options with different levels of trigger functionality
 - Evaluate trigger performance potential and impact on tracking performance
 - Compare with present tracker
Momentum resolution

Resolution @ 100 GeV [%] vs. Resolution @ 10 GeV [%]

- **A**: CMS Tracker
- **B**: Tracking only
- **2S**: pT outer only
- **PS**: 2S+PS all trigger

Legend:
- **C**: 0 → 0.8
- **I**: 0.8 → 1.6
The impact of trigger modules is well visible, but not too disruptive.
Overall comparison

- Penalty due to extra material is visible
- Substantial gain in trigger performance potential
 - Better tracking precision in the forward
 - Better z_0 resolution everywhere
 - In principle this should allow isolation cuts for electrons/photons!
- N.B. trigger performance estimate assumes efficient stub finding, sufficient data rate reduction etc…
Towards implementation

- Layout modelling software also used to estimate efficiency of individual p_T modules
 - E.g. to choose starting value for sensor spacing
 - Can play at the same time with sensors spacing and width of the window
First optimization exercise
preliminary

- Keep as ideal targets:
 - 0% efficiency @ $p_T = 1\text{GeV}$
 - 100% efficiency @ $p_T = 2\text{ GeV}$
- Limit choice of spacing to “a few” different values
Optimize width of the window at the same time…
Expected \(n \) of coordinates @ L1

- Almost full efficiency @ \(p_T = 2 \) GeV up to \(\eta \approx 2 \)
Low p_T rejection looks OK!
From stubs to tracks

- Full-scope goal: reconstruct all tracks above ~2 GeV
 - Inspired from isolation cuts presently used in High-Level Trigger
 - N.B. Association of stubs directly to muon/calorimeter primitives does not seem viable

- Two approaches considered so far to process “stubs” at the back end
 - Still in the speculative stage…
Hierarchical stub/tracklet/track processing in FPGAs

- Pairs of layers closely spaced to moderate combinatorial problem
 - “Double-stack” geometry
 - Pairs of stubs are combined into a “tracklet”, that has sufficient precision to extrapolate to the next double stack
 - Find track if at least one tracklet is found (plus two stubs)

- Geometry tuned to have well-defined sectors in the $r\phi$ view
- Concept studied only in the barrel geometry (...so far...)
- Would lead to a detector layout entirely determined by trigger architecture
 - Penalty in tracking performance non-negligible

Concept studied in some details
- Feasibility of FPGA processing still to be proven
Parallel processing in Associative Memories

- AMs used in CDF and now considered in ATLAS
- In principle powerful approach for this kind of problems
- Should be applicable to different detector geometries
 - However size of the application unprecedented
 - A first exercise done so far, using only three outermost layers, and 2S modules

... to be followed up!
... and beyond tracks?

- Study of possible use of Level-1 tracks in combined triggers not yet really started
- Trigger group busy with “Phase-1” upgrade
- Current thinking mostly inspired by use of tracking info in HLT

- For one of the next TWEPPs...
Conclusions

- Good progress in identifying options for the implementation of the tracking trigger
- Providing information that offers potential for sufficiently precise tracking @ Level-1 appears plausible
 - With acceptable impact on tracking performance
- We are still exploring the phase-space of possible options
 - Non trivial, no obvious privileged corner…
- A lot of demanding developments involved
- How to process the L1 Tracking information is an open problem
- Excellent software tools to qualify options have been developed
 - Will help all along the design of the detector!