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C In the Belle Il SVD readout chain the analog signals will be  Onepossibilityto compensate these effectsis adedicatedfilteratthe  can beimplemented in the firmware of an FPGA and the required FIR
§ transmitted over long lines. This leads to signal distortion, caused by  receiverend. coeffients can directly be calculated from the output signal of the
» the frequency dependent transfer function of the cable and also by  This poster describes the approach to realize the required filterasa  APV25front-end chip.
‘é reflections, which occour whenever the lineimpedance changes. finite impulse response (FIR) filter. We further show how such a filter
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= " e et gd tectors (DSSD) S - \'\ a certain number of samples of the input signal. One possible ~ APV25 delivers asingle-clock tickmark once every
(a'a) Slficon 5 IP eLectors = = = T iz realization (directform) isshowninthe picture below. 35 clocks when it is idle, which can be interpreted
4I1 trar;efzmdalcg)SS Ds for the tra[?gé%igal as the sampled impulse responses of the readout
. S ante orwar parl’i . | ® 5) chain. For the calculation of the FIR filter
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Front-end chip: APV25 (50 ns shaping time) events. Furthermore they are normalized so that
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Belle Il Silicon Vertex Detector (SVD) Readout System

The differential outputs of the APV25

The Origami Module is the basic element of the Belle II
SVD.
detector with the APV25 readout chips attached on one
side. Pitch adapters made of flex circuits are bent
around the edge to connect the strips of the bottom
side — hence the name Origami. This concept allows a
single, thin pipe running over all chips of a ladder for
cooling with CO,. The sensors are mounted on ribs
which are a sandwich composite of carbon fiber sheets
onanairex styrofoam core.

It consists of a 6" double-sided silicon strip

FINITE RESPONSE FILTER IMPLEMENTATION

Implementation

For first tests, an FIR filter of the order 32 was
implemented in software and verified. Then, the
order was reduced to 8, which still yields excellent
results. A filter with 8 coefficients has the
advantage that it can be implemented in the
firmware of the existing FPGAs (Altera Stratix 1) for
each channel, and thus does not require
additional hardware or space on the FADC boards.
The Firmware implementation (see below) uses
dedicated digital signal processor (DSP) blocks,
which can perform 16 bit signed multiplication
and adding at 40 MHz, the APV25 clock speed.The

The number of filter coefficients M, which is equivalent to the
number of used samples, is called the order of the filter.

An FIRfilter has the following properties:

« limited numberof coefficients

- lineartime-invariant (LTI) system
 requires nofeedback

- inherently stable
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Schematics of the FPGA implementation; the used FPGA is an ALTERA Stratix 1 (EP1520F672C7N)

E Cable Transfer Function Filter at the Receivers End /1| Comparison of APV25 signals with and without FIR filter
O| Every cable has a frequency-dependent transfer  From the viewpoint of signal theory, the readout wi | To evaluate the efficiency of the implemented FIR filter, two APV25 channels where measured with 12m long twisted pair
. function, which causes distortion and widening of - chain of the Belle Il SVD can be described by the E cables between hybrid board and back-end electronics. While the cable termination was optimized for channel A, it was
jche original signal. Mf)reoyer, changes of the followingfigure g not for channel B. Hence, on channel B both negative effects, the signal distortion caused by the transfer function of the
impedance along the line, in particular at every de_te“‘7f distorted fe?tOfeld w» | cable and huge reflections were observed without FIR filter. After implementation of an FIR filter with 8 coefficients, not
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interconnection between cables and boards, lead ? signal ? < | onlythefrequency-dependenteffects, butalso the reflections, were completely removed.
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