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 Biology: Highly efficient machines  

that greatly outperform any man-made  

technology … 

 Even small/simple animals like the bee  

 displays flight motor skills and cognitive behaviors, out of reach for 

any artificial sensor/processor/actuator system.  

• body weight of < 1 gram  

• brain weighing few micrograms  

• dissipating power of ~ 10µW 

 Nature achieves efficient and reliable computation based on fuzzy 

input data in an uncontrolled environment 

How is nature doing this? 

Can we learn from nature? 

Inspired by Biology? 
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Biological brains and digital computers are both complex 

information processing systems. But here the similarities end  

Brains: 
 imprecise 

 error-prone 

 slow 

 flexible 

 concurrent 

 adaptive - tolerant of 

component failure 

 autonomous learning 

Computers: 

 precise 

 deterministic 

 fast 

 inflexible 

 serial 

 susceptive to single-point 

failure 

 program code 

Can understanding of brain function point the way to 

more efficient, fault-tolerant computation? 

Why is it important? 

Brain vs. Computer 



Progress of electronic information processing over past 60 years: 

 dramatic improvements: 

 from 5 Joules / instruction (vacuum tube computer, 1940s) 

 to 0.0000000001 Joules / instruction (ARM968) 

 50,000,000,000 times better 

 Raw performance increase about 1 million 

 
Energy efficiency 

 Chip: 10-11 J/operation  

 Computer system level: 10-9 J/operation 

 Brain: 10-15J/operation 

 Brain is 1 million times more energy efficient!!! 
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Energy Efficiency 

C. Mead, “Neuromorphic Electronic Systems” (1990) 
S. Furber, “The Dennis Gabor Lecture 2010: Building Brains” (2010) 
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Where is the Energy? 

1 Million 
 Cost of elementary operation – turning on transistor or activating a 

synapse – is about the same. (10-15J) 

 Lose a factor 100 because:  

 capacitance of gate is a small fraction of capacitance of the node  

 spend most energy charging up wires 

 Use many transistors to do one operation (typically switch 10000).  

 information encoding: “0”, “1” 

 elementary logic operations (AND, OR, NOT) 

  

C. Mead: “We pay a factor 10000 in energy for taking out the 

beautiful physics from the transistor, mash it up into “0”and “1” 

and then painfully building it back up with gates and operations 

to reinvent [e.g.] the multiplication …” 

 
 

C. Mead, “Neuromorphic Electronic Systems” Proc. IEEE, (1990) 
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Can we get away with this?  

so far we can … but for how much longer? 

 From observation to planning tool 

 Industry invests to make it happen 

 smaller, cheaper, faster, more 

energy efficient 

… things in silicon VLSI are getting tough … 

Credit: S. Furber, 

Manchester Univ. 
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 Control of electron cloud depends critically on statistics of the 

components: fewer components  less robust statistics  

 Transistors less predictable, less reliable 

Limitations I: Devices 

Intel Fin-FET “3D“ Transistor, May 2011 

• Graphene transistors? 

• Nano wires? 

• Fin-FETS? 

• Molecular transistors? 

Wu, et al.“High-frequency, scaled graphene transistors on diamond-like carbon”, Nature 472,74–78, April 2011 

Nano-wire: IBM 

Credit: S. Furber, 

Manchester Univ. 

5 Si-atoms / nanometer 
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 Clock race: Single processors  

running faster and faster … 

 

 no more!! 

 

 

 

 

 

 

 Going parallel! 

 + probably need to: 
 avoid synchronicity 

 abandon determinism 

Limitations II: Computing Architecture 

Intel i7 quad-core (2008)  
tomshardware.com 



9 

 Massive parallelism (1011 neurons) 

 Massive connectivity (1015 synapses) 

 Low-speed components (~1 – 100 Hz) 

 >1016 complex operations / second  

(10 Petaflops!!!) 

 10-15 watts!!! 

 1.5 kg 

Ellis et al. "human cross-sectional 

anatomy" 1991, Ed. Butterworth 

„K computer“ 

(RIKEN, Japan) 

 

8.162 petaflops 

9.89 MW 
 

 

http://www.nsc.riken.jp 

Computing Power: Human Brain vs. 

Computer 
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 Neurons are similar across wide range of biological brains,  

 Like logic gates that are “universal” in a sense that any digital 

circuit can be built using the same basic gates. 

 

Both are multiple-input single-output devices, but: 

 

 

 

 

Neurons: 

 fan-out: 1000-10000 

 dynamic, several time 

constants 

 output is time-series of 

“spikes” 

 fires at 10s to 100s Hz 

 information is encoded 

in timing of spikes 

Logic Gates: 

 fan-out: 2-4 

 static internal 

process 

 output is well-

defined stable 

function of inputs 

 defined by 

boolean logic 

 

Biological Computational Primitive – Neuron 

Rat hippocampal neuron 
Lisa Pickard, 1999 

http://webspace.ship.edu/cgboer/

theneuron.html 
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Communication and Processing 

 Neurons talk to each other via of dendrites 

and axons 

 Transmitting electrical impulses - ’spikes’ - 

from one neuron to another 

 Most of the processing happens in the 

junctions between neurons –  

the synapses 

 Storage (synapse stores state) and 

processing (evaluating incoming signal, 

previous state and connection strength) 

happen at the same time and in the same 

place.  

 This locality is one key to energy efficiency 

Credit: Graham Johnson Medical Media 

B. Mckay, University of Calgary 



„Neuromorphic“ Engineering 

 C. Mead (CalTech, 1980`s – 90`s):  

 “Neuromorphic Electronic Systems”, Proc. IEEE 

 Silicon VLSI technology can be used to  

build circuits that mimic neural functions  

 Silicon primitive: transistor – much physics similar to neurons 

 Building blocks: neurons, axons, ganglions, photoreceptors, … 

 Biological computational primitives: logarithmic functions, 

excitation/inhibition, thresholding, winner-take-all selection … 

Wijekoon, J., et al., “Compact silicon neuron circuit with spiking and bursting behavior”. Neural Networks. 21, 524–534.  
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Schemmel  et al., “Implementing Synaptic Plasticity in a VLSI  

Spiking Neural Network Model” 



Building Brains 

 Mostly limited-scale: multi-neuron chips, 

synapse arrays, convolution chips etc. 

 Initially for pure scientific purposes – now more and more for 

solving real-world engineering and computing problems 

 Emerging technologies like memristors are investigated 

 Some remarkable “big-scale” projects attempt the scale of a 

mammalian brain  final frontier: the human brain 

 
“Neurogrid” – K. Boahen, Stanford: 1 million neurons with 6 billion 

synapses in mixed analog/digital VLSI. 

“SpiNNaker” – S. Furber, Manchester Univ., (20 processors/chip 

each simulating ~1000 neurons, 65000 chips in 2D toroidal mesh) 

“Brainscales/FACET” – K.H. Meier. Univ. Heidelberg: CMOS wafer-

scale integration of analog multi-neuron chips (400 neurons/10000 

synapses per chip, up to 108 neurons on the wafer system) 

“Blue Brain” Project – Henry Markram, EPFL Lausanne  final goal: 

human brain running on IBM Blue Gene/L (360TFLOPS) 
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“Neurocore” - 65,536 neurons 



Biology-Inspired „Neuromorphic“ Vision 

 Very successful branch of neuromorphic engineering: 

sensory transduction  vision 

 “Silicon Retina” (Mahowald, Mead; 1989) 

 Neuromorphic vision sensors sense and process 

visual information in a pixel-level, event-based, 

frameless manner 

 Vision processing is practically simultaneous to 

vision sensing 

 Only meaningful information is sensed, 

communicated, and processed 

Biological Paradigm 

Functional Model 

Electrical Model 

VLSI Design 

Neuromorphic 

Vision Sensor 
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Fukushima / NHK Research Lab 1970  

Electronic Retina 

K. Fukushima, et al.: "An electronic model of the retina“, Proceedings of the IEEE, 1970  15 

http://www4.ocn.ne.jp/~fuku_k/

files/paper-e.html 



History of integrated silicon retina  

vision sensors 

Mahowald/Mead: Silicon Retina (SciAm 91) 

CSEM: VISe contrast vision sensor (JSSC 03) 

JHU/UPenn: “Octopus” imager (ISSSC 01) 

ETH/AIT: DVS – Dynamic Vision Sensor (JSSC 08) 

JHU: Temporal Change Detection Imager (JSSC 07)  

IMSE: Spatial Contrast Silicon Retina (TCAS 08) 

ATIS – Asynchronous Time-based Image Sensor (JSSC 2011) 
16 

Stanford/UPenn: 5-Layer silicon retina (SciAm 05) 
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Limitations of Conventional Image Sensing  

Conventional image sensors acquire the  

visual information as “snapshots” 

time-quantized @ frame rate 

 World works in continuous time: things  

happen between frames 

 Each frame carries the information from 

all pixels – whether or not this information  

has changed since the last frame 

Biological approach: Not “blindly” sense/acquire  

redundant data but respond to visual information: 

 Generate only meaningful data near real-time 

 Reduce data rate  decrease demands on bandwidth / memory / 

computing power for data transmission / storage / post-processing 



18 

The Human Retina 

 135 million photoreceptors – detection threshold (rod): 1 photon 

 1 million ganglion cells in the retina process visual signals received 

from groups of (few to several hundred) photoreceptors. 

 Analog gain control, spatial and temporal filtering: ~ 36 Gb/s HDR 

raw image data is compressed into ~ 20 Mb/s spiking output to the brain 

 Retina encodes useful spatial-temporal-spectral features from a 

redundant, wide dynamic range world into a small internal signal range. 

 Power consumption: ~ 3.5 mW 
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Biology-Inspired Dynamic Vision 

Neuromorphic Dynamic Vision Sensor (DVS) 

 Array of light-controlled “integrate-and-fire”  

neurons driving local bipolar cells 

 Sensor models the Magno-cellular transient pathway,  

constitutes a simplified three layer model of the human retina 

 Individual pixels respond to relative change (temporal contrast) by 

generating asynchronous pulse events 

 Pixels operate autonomously – no external timing signals  

 No frames! 

 Sensor is event-driven instead of clock-driven  responds to 

“natural” events happening in the scene 

 Temporal resolution is not quantized to a frame-rate 

DVS128 

Lichtsteiner, P.; Posch, C.; Delbruck, T., "A 128×128 120dB 30mW asynchronous vision sensor that responds to relative intensity 

change," ISSCC 2006 (JSSC 2008) 



DVS Operation 

 Pixel asynchronously and in 

continuous time responds to relative 

change in illuminance 

 Generates ‘spike’ events 

 For each spike the x,y-address is put 

on an asynchronous bus 

 Address-Event-Representation 
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Key characteristics: 

 Wide dynamic range (> 120dB) 

 High temporal resolution (< 1µs) 

 Low latency (< 10µs) 

 High contrast sensitivity (~ 8%) 

Lichtsteiner, P.; Posch, C.; Delbruck, T., "A 128×128 120dB 30mW asynchronous vision sensor that responds to relative intensity 

change," ISSCC 2006 (JSSC 2008) 
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Temporal Contrast Events 



High Speed  - Wide Dynamic Range 
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 Temporal resolution: µs-range (equivalent 100`000 to 1`000`000 frames/s) 

 Dynamic range >120 dB (standard CMOS/CCD: 60 – 70dB) 
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Next-generation bioinspired imaging 
„where“ and „what“! 

Magno- and Parvo- ganglion cells –  

have very different spatio-temporal characteristics 
 

 Transient Magno-cellular pathway – alerting  “where” system 

 Sustained Parvo-cellular pathway – detailed vision  “what” system 

 Next step: Add biological “What” function to transient temporal 
contrast sensing. 

 

 Sustained pathway principle encodes absolute  
intensity (gray-levels) in asynchronous pulse events. 

 
 Array of pixels that:  

 individually and autonomously react to scene changes and  

 acquire illumination information conditionally and event-driven 
 
Asynchronous Time-based Image Sensor – ATIS 
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ATIS Pixel – Basics 

 Two blocks: DVS change detector and exposure measurement 

 Change detector triggers exposure measurement only after a 

detected change in the pixel`s FoV 

 Continuous-time asynchronous operation 

 Communicates detected changes AND new exposure information 

independently and asynchronously – NO FRAMES 

 Intensity-encoding is time-based 

change

detector change events

PD1

ATIS Pixel

exposure 

measurement

PD2

PWM grayscale events
time

trigger
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ATIS Pixel – The Complete Picture 
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ATIS Pixel Layout – CMOS 0.18µm 

 0.18µm CMOS 

 30×30µm2 

 77T, 4C, 2 PDs 

 Fill factor: 30%  
 10% CD 

20% EM 

 Analog part: 
 change detector 

 integration 

 comparator 

 Digital part 
 pixel-level state logic 

 communication 

 handshaking 

 
30µm 

PD1 (EM) 

Analog Signal Processing 

Digital Communication / Control 

PD2 (CD) 
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ATIS Concept – Implications 

Asynchronous time-based encoding of exposure information  

 Avoids the time quantization of frame-based acquisition and 

scanning readout. 

 Allows each pixel to choose its own optimal integration time 

instead of imposing a fixed integration time for the entire array. 

 Yields exceptionally high dynamic range (DR) and improved 

signal-to-noise-ratio (SNR).  

 DR is not limited by power supply rails 

Pixel-autonomous change-detector controlled operation 

 Pixel does not rely on any external timing signals 

 Pixel that is not stimulated visually does not produce output 

 Complete suppression of temporal data redundancy = 

lossless pixel-level video compression 

change

detector change events

PD1

ATIS Pixel

exposure 

measurement

PD2

PWM grayscale events
time

trigger



ATIS – Specifications 

QVGA  

pixel array 

9.9mm 

Fabrication process UMC L180 MM/RF 1P6M CMOS 

Supply voltage 3.3V (analog), 1.8V (digital) 

Chip size 9.9 × 8.2mm2 (6.8 Mio. transistors) 

Optical format 2/3“ 

Array size QVGA (304 × 240) 

Pixel size 30µm × 30µm 

Pixel complexity 77T, 3C, 2PD 

Fill factor 30% (20% EM, 10% CD) 

Integration swing ΔVth 100mV to 2.3 V (adjustable) 

SNR typ. 

SNR low 

>56dB (9.3bit) @ ΔVth = 2V, >10Lx 

42.3dB (7bit) @ ΔVth min (100mV), 10Lx 

tint @ ΔVth min (100mV) 2ms @ 10Lx (500 fps equ. temp. res.) 

DR (static) 143dB 

DR (30fps equivalent) 125dB 

PRNU / FPN <0.25% @ 10Lx (with TCDS) 

Power consumption 50mW (static), 175mW (high activity) 

Readout format Asynchronous AER, 2 × 18bit-parallel 

28 
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Ultrahigh Dynamic Range 

 143dB for static scene 

 125dB for 30fps (video speed) equivalent temporal resolution 
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Pixel-level Video Compression 

 QVGA continuous-time 

video stream 

 2.5k – 50k events/sec 

 with 18bit/event  

 45k – 900k bit/sec  

 30fps×8bit×QVGA 

 = 18Mbit/sec (raw) 

 Variable compression 

factor: 20 – 400 



31 

Behind the Scenes 
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Conclusions 

DVS real-time contrast data 

 Wide dynamic range (> 120dB) 

 High temporal resolution (< 1µs) 

 Low latency (< 10µs) 

 Contrast sensitivity ≥ 10% 

 High-speed dynamic machine vision 

 Industrial robotics 

 Micromanipulation 

 Autonomous robots and AUVs 

 Automotive 

… where need for speed meets 

uncontrolled lighting conditions! 

ATIS frame-free, compressed video 

 Wide dynamic range (125–143 dB) 

 Fast (500 fps equ.temp.res. @ 10lx) 

 High image quality (56dB SNR) 

 Compression up to 1000 (static) 

Low-data rate video 

 Wireless sensors 

 Sensor networks 

 Web video 

Wide DR, high-quality imaging/video 

 Cell monitoring 

 X-ray crystallography 

 Astronomy 



Thank you for your attention! 
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Outline 

 Bio-inspired? 

 Computers and brains: similarities and differences 

 Limitations to digital, synchronous information processing  

 Computational primitives – neurons vs. logic gates 

 “Neuromorphic Engineering” – building brains 

 Vision – biological / bio-inspired 

 Modeling the retina – ”Silicon Retina” 

 CMOS implementations of bio-inspired vision chips 

 Applications 

 Outlook 
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Neural Circuits – Cortical Architecture 

 Regular high-level structure 

• e.g. 6-level cortical micro 

architecture 

 low-level vision 

 language, … 

 

 Random low-level structure 

• adapts over time 

• synaptic connections change 

• weights change 

 learning!! 

Brain Mind Institute, EPFL 
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At the system level, brains are at least 1 million times more power 

efficient than computers. Why? 

Cost of elementary operation (turning on transistor or activating synapse) 

is about the same. It’s not some magic about physics. (10-15 J) 

Computer Brain 

Fast global clock Self-timed, data driven 

Bit-perfect deterministic logical 

state 

Synapses are stochastic! Computation 

dances  digitalanalogdigital 

Memory distant to computation Synaptic memory at computation 

Fast, high resolution, constant 

sample rate analog-to-digital 

converters 

Low resolution adaptive data-driven 

quantizers (spiking neurons) 

Mobility of electrons in silicon is  

about 107 times that of ions in solution. 

Brain vs. Computer - II 

T. Delbruck, “Spiking silicon retina for digital vision". IEEE DLP lecture 
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Biological Vision – Retina Ganglion Cells 

Two different types of retinal ganglion cells  
and corresponding retina-brain pathways:  

Magno- and Parvo-Cells –  

very different spatio-temporal characteristics 

Magno-cellular pathway – transient channel 

 receptors evenly distributed over retina, big (low spatial resolution) 

 short latencies, rapidly conducting axons (high temporal resolution) 

 respond to changes, movements, onsets, offsets (transient response) 

 biological role in alerting, detecting dangers in our peripheral vision 
 “Where” system 

Parvo-cellular pathway – sustained channel 

 receptors concentrated in the fovea, small (high spatial resolution) 

 have longer latencies and slower conducting axons (low temporal res.) 

 respond as long as visual stimulus is present (sustained response) 

 transportation of detailed visual information (spatial details, color) 

 “What” system                   (A. v.d.Heijden, „Selective attention in vision“) 



Bioinspired Vision – Events vs. Frames 

 Conventional imagers: 

 Neglect dynamic visual information 

 Acquire frames at discrete points in time 

 

 A lot of interesting information in the  

dynamic contents of a scene 

 Things happen between frames … 

 New paradigm of visual sensing  

and processing 

 “Event-based vision” 
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Pérez-Carrasco et al., “Fast Vision Through Frameless Event-

Based Sensing and Convolutional Processing”, TNN 2010 



Going past the retina and simple vision 

39 
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Event-based Visual Cortex – Convolution  

Bernabé Linares-Barranco, Instituto de Microelectrónica de Sevilla  



Projective AER convolution 

hardware module  

Linares-Barranco, IMSE, Sevilla 

AER=Address-Event Representation 



64x64 

ConvModule 

L. Camunas-Mesa et al., 2010 
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:  

Building a Self-Learning Visual Cortex with 

Memristors 

Bernabé Linares-Barranco, Instituto de Microelectrónica de Sevilla  
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Applications of DVS 

DVS events are well suited to drive computer vision systems  

 Fast visual feedback loops 

 Motor control 

 Industrial robotics 

 Autonomous robots and AUVs 

 Automotive 

… where need for speed meets uncontrolled lighting conditions! 

     applies DVS in 

 Traffic data acquisition 

 People counting, people flow monitoring 

 Ambient assisted living (fall detection) 

 Gesture recognition 
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Event-based vs. Frame-based Processing 
Frame-based (conventional) 

 camera captures a sequence of frames 

 each frame is transmitted to a computing system 

 processed by sophisticated image processing algorithms for 

achieving some kind of recognition 

 computing system needs to have all pixel values of a frame before 

starting any computation 

 reality is binned into compartments of duration Tframe 

 computing system has to process the full frame, handling large 

amounts of data 

Event-based (bio-inspired) 

 pixel sends an event (usually its own x,y coordinate) when it 

senses something – asynchronous, real-time 

 events are transferred to computing system as they are produced 

 computing system updates its state after each event 

 events are processed as they flow – sensing and processing is 

done concurrently – no need to wait for frames 

 For performing recognition not all events are necessary 



Pixel circuit – “Integrate-and-Fire” neuron   
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 Photoreceptor: logarithmic intensity → gain control mechanism that is 

sensitive to temporal contrast = relative change 

 Differencing amplifier removes DC, amplifies pos/neg transients 

 Two threshold comparators monitor ganglion output, spike generation 

 Output: asynchronous spike events (circuit is reset after each event) 

Lichtsteiner, P.; Posch, C.; Delbruck, T., "A 128×128 120dB 30mW asynchronous vision sensor that responds to relative intensity 

change," ISSCC 2006 (JSSC 2008) 
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Measured SNR vs. integration swing 

ΔVth and light intensity: 

SNR = 56dB for ΔVth= 2V/10Lx  

(42.3dB for ΔVth= 100mV/10Lx/2ms) 

 9.3 Bit grayscale resolution 

Encoding Gray-Level Data in Time: 

PWM Imaging 
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CMOS Neuromorphic Vision Sensors Gallery 

Tmpdiff128 – 128×128 pixel array sensor 

high-dynamic-range, low-power temporal contrast dynamic vision sensor 

with in-pixel analog signal processing  
ISSCC 2006, SSCS “Jan Van Vessem” Award, IEEE J. of  Solid-State Circuits 2008 

DLS – 2×256 pixel line sensor 

dual-line optical transient sensor with on-chip precision time stamp 

generation and digital arbitration for high-speed vision 
ISSCC 2007 

 

DVS-IR – 64×64 pixel IR array sensor 

transient vision sensor for the thermal infrared (IR) range with micro-

machined bolometer IR detector technology  
ISCAS 2008 “SSTC Best Paper Award”, IEEE ICECS 2007 “Best Paper Award”, 

IEEE Sensors Journal 2009 

ATIS – QVGA event-driven dynamic vision and image sensor 

QVGA ultra-wide dynamic range CMOS imager and dynamic vision 

sensor with focal-plane lossless video compression 
ISSCC 2010, ISCAS 2009 “SSTC Best Paper Award”, IEEE J. of  Solid-State 

Circuits 2010 (invited) 

Presented at: 



Wiring – address-event representation 

 How to get the data off the array quickly? 

 Mobility of electrons in silicon is about 107 times that of ions in 

solution,  

 Signal transmission speed: lightspeed vs. few meters / sec 

 Solution: Softwiring 

 Each neuron is assigned an “address”  Address Event (AE) 

 When neuron fires it pushes its address onto a  

shared asynchronous bus 

 Asynchronous digital circuits map and route the address events 

to other nodes or different chips or (external) processing units 
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Processing and Storage 

 N1 spikes—pulse travels down the axon  

to the synapse of target N2.  

 The synapse of N2—having stored its own state locally— 

evaluates the importance of the information coming from N1 

by integrating it with own previous state and strength of 

connection to N1  

 Two pieces of information—signal from N1 and state of N2's 

synapse—flow toward body of N2 

 When information reaches N2, there is only a single value—

all processing has already taken place during the 

information transfer.  

 Storage and processing happen at the same time and in the 

same place.  

 This LOCALITY is one of main reasons for energy efficiency 

of biological brains 


