L1-track triggers for ATLAS in the HL-LHC

Elliot Lipeles University of Pennsylvania

Outline

Context of trigger issues in the HL-LHC

- Comments on the HL-LHC design parameters
- The current ATLAS trigger system
- Known (or unknown) trigger issues for HL-LHC
	- Planning for the unknown

Two track trigger options

- Intro to the issues: why is this so hard?
- \bullet Self-seeded: p_T filtering
- Region of interest seeded: spatial filtering \bullet
- **Current status**
- Comparison of the Methods

HL-LHC: High Luminosity LHC

Original design luminosity of detectors is 1 \times 10³⁴ cm^{−2}s^{−1} \bullet

Proceedings of Chamonix Workshop 2011

- Luminosity leveling at 5 \times 10³⁴ cm⁻²s⁻¹
- Nominal bunch spacing 25ns but it could be 50ns
- Collisions per crossing

 $N_{\text{collisions per crossing}} = \sigma \mathcal{L} \Delta t_{\text{bunch}}$

- This means \approx 100 for 25 ns and \approx 200 for 50 ns
- The design parameters planned in 2010 considered 10^{35} cm⁻²s⁻¹(no leveling), 25-50 ns, and up to 400 collision per crossing
- LHC luminosity has ramped up faster than expected, more performance could mean more pressure on the trigger

Impact of bunch spacing:

- smaller spacing means less *in time* pile-up
- **•** smaller spacing means event based buffers/queues fill faster
	- hit-based buffers are roughly the same
- **•** smaller spacing means more crossings, so we keep a smaller fraction
	- with a 40 MHz crossing rate and a 400 Hz final output rate, the trigger supression has to be 10^{-5}
	- with a 20 MHz crossing rate and a 400 Hz final output rate, the trigger supression has to be 5×10^{-4}

The current ATLAS trigger system

The current calorimeter trigger: vertical view

L1 trigger

- analog sums over 0.1×0.1 towers
	- EM and HAD separated (can cut on EM/HAD)
	- Isolation possible

HLT: L2 and EF trigger

- Uses full granularity and same digitization as offline
- **Track shower matching**
- **•** Detailed shower shape cuts
- **EF** reclusters jets
- Sharper turn-on curves

The current muon trigger: vertical view

L1 trigger

- **A** Faster Resistive Plate (RPC) and Thin Gap (TGC) Chambers
- **Hardware pattern** recognition

HLT: L2 and EF trigger

- Use slower more precise monitored drift tubes (MDT)
- Combine with inner detector tracking
- L2 simple B-field model
- EF use full offline software

Increase in overall rates

if e $p_T > 30$ GeV, we lose a lot of physics (most of the W decays)

We need cleaner leptons, especially electrons at L1

The muon resolution problem

- L1 muon resolution not good enough to cut harder than 20 GeV
	- \bullet Only reduce rate by 2 \times going from 20 GeV to 40 GeV
- Single muon trigger would be in jeopardy

There are possible upgrades to the muon chamber themselves to address some of these problems (talk by Robert Richter).

Degradation of Calorimeter Isolation

- Calorimeter isolation will degrade in efficiency as pile-up increases \bullet
- Track isolation with a z-vertex cut is roughly insensitive to pile-up

Figures taken from FTK proposal (proposed fast track processor for L2)

Motivation Summary

Issues

- Overall rates are large: mostly jets misidentified as X
- Muon resolution limits the largest possible p_T cut
- Calorimeter isolation degrades, track isolation could help
- Missing energy degrades (less useful in combinations)
- **•** Effects on jets?

Motivations for a track-trigger

- **•** Improve muon resolution
- Track-shower matching
- **Track isolation: e,** μ **,** τ **,** γ
- Could tracks even be useful for jets?
- b-tagging?

Flexibility: We are planning Columbus' second voyage before we have full news of the first

Overview of Upgrade

Overview of the upgrade: Phase 2

Tracker Upgrade

Current Strawman Layout

Pattern recognition / fake track supression are important design criteria Strips are configured with one-side having a low-angle stereo ... and of course minimize material

Strip construction

Stave: integrated bus, cooling, and support

Elliot Lipeles (Penn) [ATLAS L1-track triggers](#page-0-0) September 30, 2011 16 / 35

Sensor

Track Triggering Options

Track Trigger Challenges

- Strips: \approx 45 million
- Pixels: \approx 400 million

- Data flow
	- \bullet Before the track trigger, the plan was to read out \approx 100 KHz of full events
	- Doubling the rate roughly doubles the power, which means the material in the power distribution and the cooling.
	- Reading out the full detector at 20 (or 40) MHz is a non-starter
	- ⇒ **Need a filter to reduce the data flow**
- Two options:
	- Filtering on p_T
	- 2) Filtering on Region

Filtering on p_T : Unseeded/Doublet Method

Reducing the data flow, Option 1: Filtering on p_T

"Unseeded"/Doublet Method

Other sources of doublet coincidences

The Data Reduction

- \bullet Two-trigger layers at 0.80 m and 1m roughly doubles to total bandwidth
- Total bandwidth for outer layer with doublet readout is comparable to an inner layer without
- Must eliminate stereo angle for outer layers

The communicating between the two sides

Rough Latency Estimate

Digitization \approx 100 ns collecting signals and correlating Hit Transmission ≈500 ns sending the data from the detector to the electronics cavern Track Linking ≤ 500 ns content addressable memory (CAM) or FPGAs

\Rightarrow Produce tracks in order 1 μ s

This is in time to fit into the L1 latency of the current system No conflict with existing hardware

Filtering on Region: Two-level trigger

Reducing the data flow, Option 2: Filtering on Region

Two-level trigger: L0 and L1

- **L0** uses calorimeter and muon system to define regions of interest (RoIs)
- **L1** extracts tracking for just RoIs from detector front-ends

Two-buffer scheme

Two-buffer scheme

Bandwidth = L1 Rate + L0 Rate \times fraction of data in RoIs ≈ 100 KHz e.g. L0 Rate = 500 KHz, L1 Rate = 50 KHz, RoI fraction = 10%

Data Reduction from Regions

Consider cones in $\eta - \phi$ space

- Typical cones size used for isolation are $\Delta R = \sqrt{\Delta \phi^2 + \Delta \eta^2} = 0.2 - 0.4$
- Fractions of tracking volume in a cone of $\Delta R < r$ is

$$
\frac{\pi r^2}{(\eta \text{ range}) \times (\phi \text{ range})}
$$

- \bullet For a cone of $\triangle R < 0.2$ this is $0.4%$
- This allows for a large number of RoIs and a safety margin to fit in 10% RoI request fraction

Data Reduction from Regions

- **•** Because of beam spot spread, RoI need to be elongated along beam direction
- Large request rate for central wafers in

Finding tracks in the data

Both methods are about getting the data out of the detector Still need to find the tracks \Rightarrow Content Addressable Memory (CAM)

- Technology has been used in many places : CDF SVT, H1, ...
- Current proposal for ATLAS Phase-I upgrade is a preprocessor for the level-2 trigger which gets tracks with near-offline quality at the current 75 KHz L1 output rate
- For Rols, longer latency means other option possible (GPUs?)

Prototyping in ABCn chip: Region of Interest

ABCn = front-end shaping, digitization, and buffering chip

Prototyping in ABCn chip: Doublet

ABCn = front-end shaping, digitization, and buffering chip

per la segunda de la segun
Per la segunda de la segun
 anar
Luma ✏✏✏✏✏✏✏✏✏✏✏ \equiv $\overline{}$ $\overline{}$ $\overline{}$ Doublet Method $\overline{}$ • Separate path with Pineline Pipeline Data out cluster size filtering **•** Dedicated link sends out cluster **Bank 1 Data** Bank 2 Data information at a Cluster? Cluster? Separately fixed latency after

beam crossing

enabled block

Doublet Method

- \bullet Delivers: High- p_T tracks for all crossings
- Latency: Could fit withing latency specifications of current system
- **•** Effects on tracking system:
	- Requires development of fast readout chain
	- Requires removal of stereo angle on trigger-layer strips

Region of Interest Method

- Delivers: All momentum tracks in regions for selected events Allows for track isolation determination
- Latency: Needs replacement of all electronics in the system
	- Almost all electronics already planned to be replaced
- Large latency allows for more processing of the other detector information
	- Inclusion of muon monitored drift tube (MDT) information
	- Inclusion of fine granularity calorimeter information
- **•** Effects on tracking system:
	- Only affects buffers and readout logic in the front-end chips

Motivation

- Total rates with current L1 get large
- Muon resolution in current L1 insufficient to raise p_T threshold beyond 20 GeV
- Calorimeter isolation and Missing transverse energy will be degraded by pile-up

Methods

- Strip doublets: High- p_T tracks for all crossings
- Region of Interest: All momentum tracks in selected regions for selected events

Outlook

A technical proposal is being drafted with both concepts included for further investigation