A READOUT SYSTEM-ON-CHIP FOR A CUBIC KILOMETER SUBMARINE NEUTRINO TELESCOPE

S.Anvar, V.Gautard, H.Le Provost, F.Louis, K.Menager, Y.Moudden, B.Vallage, E.Zonca, on behalf of the KM3NeT consortium

IRFU/SEDI-CEA Saclay
F-91191 Gif-sur-Yvette, France

1 Supported by the European Commission through FP6 and FP7

TWEPP-11, Vienna, Austria,
26-30 September 2011
The KM3Net Detector

Digital Optical Module (DOM)

31 PMTs/DOM

12800 DOMs

320 lines

http://www.km3net.org

The DOM processor board

Power conversion board

Processor board & Software designed at CEA-IRFU

DOM designed at NIKHEF institute (Amsterdam, Netherlands)

HV PMT base

Heat conductor

PMT

Signal collection board
The KM3Net prototype
Offshore Processor Board

- PMTs
 - 31 TOT Data
 - x 31 small PMTs

- FPGA
 - Bitstream
 - Processor Boot
 - Flash Memory (32 MB)
 - Slow-Control
 - for the Storey (I2C, SPI)

- 31 x 1 GHz TDC

- Readout Logic

- Slow-Control Task
 - Readout System On Chip (RSOC) / VIRTEX-5 PPC440 processor

- Data
 - SC Protocol Logic
 - Clock / Command Extraction

- DDR2 Memory (64 MB)

- RTOS

- 1Gb/s Ethernet Link
 - To shore station

- Data Task
 - Slow Control Task
Firmware TDC Development

Packetized and Sent over ETHERNET

Event type/TDC number

Coarse Time Stamp #24-bit

TDC #16-bit

XILINX VIRTEX-5 ISERDES

[Originally designed by A.Zwart (NIKHEF) / small PMTs test bench for ALTERA]
Clock distribution

Command (CMD) insertion

Custom Logic

Phase and Latency Measurements

Transmit Reference Clock @62.5 MHz

STANDARD 1000BASE-X ETHERNET

On Shore VIRTEX-6 Board

Command (CMD) extraction

Custom Logic

Recovered Clock @62.5 MHz / Bit slice analysis (known latency)

Recovered Clock @62.5 MHz

IDLE CMD DATA

1.25 Gbps

1000BASE-X ETHERNET

1.25 Gbps

Event Time Stamping

PPC440 Bus

Embedded 62.5 MHz

DATA

CMD
Transmit/Receive clock skew

Tx/Rx clock skew measured on shore with DMTD and oscilloscope (ns)
Store & Forward Acquisition model

PMT 0-31 & Routing Matrix

31 TDC & Routing Matrix

Acoustic Data

Detector Clock (ETHERNET)

PPC440 processor @ 300 MHz 1 Gb/s Ethernet Port

31 TDC

Circular Buffer

FIFO 0

FIFO 5

Data Router

FIFO 6

PMT 0-31

Readout Logic

FIFO 0

FIFO 5

FIFO 6

Dynamic Memory

134 ms Data

Interrupt @ 134 ms (Typical)

Slow control (Configuration, Readout on requests)

134 ms Data

134 ms Data

Time Slice To Computer 1

Time Slice To Computer 2
Time Slice Building

Intrinsic Parallelism

Embedded Computing

- Time Slice 2
- Time Slice 1
- Time Slice 0

Start

Detector Clock (Start) Commands
- Track reconstruction
- Data routing

Clock Distribution/Commands Insertion

Multi-gigabit Standard Ethernet Switching

Onshore Farm

Offshore Nodes

Farm Computing

Performance Parallelism
Data acquisition setup

Reference Clock @62.5 MHz

STANDARD 1000BASE-X ETHERNET

On Shore VIRTEX-6 Board

- Run Control
- Target Configuration
- Data acquisition
- vxWorks RTOS boot server

RSOC VIRTEX5FX-70
- vxWorks RTOS
- 1 TDC Channel
- 1 dedicated TDC ASIC channel
- PPC440@300 MHz
- Bus@75 MHz

Pulse generator

Synchronous 1000BASE-X ETHERNET

Start Command

Reference Clock @62.5 MHz

Host PC
Acquisition results

Scope measurement
Mean: 100,10667 µs
RMS: 1,75 ns

Power: 7 W

Pulse @ f=10 kHz
2 ns 8 ns 2 ns

Current acquisition setup (Source limitation): 60 Mb/s

Standalone measured TCP/IP throughput
PPC440@400 MHz / Bus@100 MHz / WindRiver Zero Copy buffer / Jumbo frames: 988 Mb/s
CONCLUSION

- Common Readout system functions integrated in a single component (RSOC):
 - Event Time stamping @ 1 GHz
 - Clock and command distribution
 - Slow-control and data acquisition performed in a RTOS multi-tasking embedded system

- RSOC is a node designed to be plugged in a complete Data acquisition System
 - Server/Client topology (ICE)
 - Scalable system